Clio: A Hardware-Software Co-Designed
Disaggregated Memory System

Zhiyuan Guo*, Yizhou Shan* (* equal contribution)
Xuhao Luo, Yutong Huang,

Hardware Resource Disaggregation:

Breaking monolithic servers into
distributed, network-attached
hardware components

gt ey ad gt ey Al gt T U

i i i . y
S LTS 0 1 SIS R 1 - . - oAt g i CH IR

¢
INTEL" SOLID-STATE DRIVE
750 SERIES

T _.‘J__m“m PR

i

pap dIREAEE G U pae dLINENE HE

IR HEH L

neken: .
o

a
S (¢
) INTEL" SOLID-STATE DRIVE _/‘3
750 SERIES
(lntel

(R EHE

Workshop on Resource Disaggregation
and Serverless (WORDS 2022)

* Website: https://www.wordsworkshop.org/

e Submission deadline: 9/29/2022

e Workshop date: 11/17/2022 (virtual or hybrid)

* Types of papers
e Vision paper, completed new work (up to 5 pages)
* published work (2 page abstract)

 PC chairs
* Arvind Krishnamurthy, University of Washington

e Yiying Zhang, University of California San Diego

o LegOO S [O SDI ’1 8] We implemented Kona as a C library that interposes on an appli-

 FastSwap [EuroSys ’20]

Existing Disaggregated Memory Systems

5.1 Implementation

cation’s memory allocation and uses a cooperative user thread for

handling page faults [80]. T| 5.1 Hardware Emulation

(LoC). The Kona server ar Since there is no real resource disaggregation hardware,
and were implemented in § we Emu]ate aggregated hardware components using

o AI FM [O SDI ’20] E mulating hardware suj| OMmMOQIty servers by limiting their internal hardware
2 2eee 2. .1 usages. For example, to emulate controllers for mCom-

I ponents and sComponents, we limit the usable cores of

° Semeru [OSDI 20] a server to two. To emulate pComponents, we limit the

amount of usable main memory of a server and configure
it as LegoOS software-managed ExCache.

All existing works use server to
Build/Emulate disaggregated memory devices

How about real hardware?

Outline

Introduction

Motivation: Why do we need real hardware?
Clio Overview: Interface and overall approach
Design: How we remove “state”

Implementation and evaluation results

Disaggregated Memory Hardware

Network

Features

Network Port
2 Standalone

Network Stack

7 Host memory
Virtual Memory Access

_ . System
Directly connect to network

Memory Controller

Shared by applications

Memory Resource

Desired goals

7z High throughput

2 Low avg and tall latency
7z Scalability and capacity
> Low cost

> Easy to use and versatile

Could Server Emulation work?

Virtual Mem Sys - Unused resources In server
Low Cost x

- Limited DRAM size

Capacity x
m Servers are overkill for

memory disaggregation.

Memory Node (Server)

10

Could RDMA work?

CXL?
Need specialized interconnect

' . . .
Virtual Mem Sys Ple_llzi glae:ut 16.8ms! Not immediately available

-Limited NIC cache of OS management

structures
Scalability

-Slow page fault operations in data path
Tall Latencyx

Page Fault
QP MR PTE
Cache Cache Cache
?NIC RDMA is not designed for standalone

MN(Server) memory disaggregation .

What we build: Clio [ASPLOS22]

a hardware-based disaggregated memory system that virtualizes, protects,
and manages disaggregated memory at standalone memory nodes

Outline

Introduction

Motivation: Why we need real hardware

Clio Overview: Interface and overall approach
Design: How we remove “state”

Implementation and evaluation results

13

Compute Node

virtual memory interface

remote_alloc(pid, size)
read/write(pid, VA)

key-value & other high-level API Network

Clio Net (PHY+MAC)

.
.
. .
L 4
IS .
., .

Memory Node Virtualize Computation Allocation
(Clio Board) Protect ASICs offload

Distributed Support

Multiplex Lo el L

.
o**
.
®

O..
v,

On-Board DRAM

14

Main ldea:

Eliminate state from hardware

“state”:
Metadata stored on the memory node that need to be
accessed or updated when processing requests.

15

Benefit of Removing State

1 External State 0

Memory Node Hardware

: vtate
rache

State

Client Side Stack

.-----------1

Inter-request State

Compute Node Memory Node

e Minimizing state can reduce cost, reduce tail latency, and improve scalability

* Avoiding inter-request state can make the pipeline smooth

16

Outline

Introduction

Motivation: Why we need real hardware

Clio Overview: Interface and overall approach
Design: How we remove “state”

Implementation and evaluation results

17

How to eliminate state from MN hardware

Overall Approach: Co-designing hardware, network, and software

1. Reduce state in disaggregated memory protocol
2. Move state to compute node

3. Remove state from critical path

4. Optimize hard-to-remove state to bounded size

18

How to eliminate state from MN hardware

Overall Approach: Co-designing hardware, network and software

1. Reduce state Iin disaggregated memory protocol
2. Move state to compute node
3. Remove state from critical path

4. Optimize hard-to-remove state to bounded size

19

Reduce state Iin disaggregated memory protocol >
Asymmetric Memory Request Protocol

Response ONLY

App Process

Per-Connec ‘n Metadata
Request ONLY
N e

woa)sAS Aiowajy jenpip

NWvdd pieog- up

Compute Node smory Node

e Observation: accesses to MNs are always in the request-response style

20

Reduce state Iin disaggregated memory protocol >
Asymmetric Memory Request Protocol

Response ONLY RDMA Network
Per-Connec ‘n Metadata

App Process
"" Request ONLY

———————

Client Side Stack Asymmetric Congenstion Control

wialsAg Aiowaj) jenpip

Compute Node

Memory Node

e Observation: accesses to MNs are always in the request-response style
Asymmetric RPC-style, connection-less network protocol

Nvdd pieog- up

21

Reduce state Iin disaggregated memory protocol >

Network Ordering
One write with p1 p2

two packets: P1/P2 § 9
&— Sl o
App Proc g
PP P2/P1 Net Rx Bv r (reorder) § %
i —_— - g

n

P>

®

3

Compute Nc y Node

e Observation: Memory requests can tolerate certain network reordering

22

Reduce state Iin disaggregated memory protocol >

Network Ordering
RDMA Network S
< 1
Per-Connec n Metadata] g
Q
App Process § 3
Net B 3uffer g o
]
---------- /= m omm o %) E
Client Side Stack mmg:EFlg ®
reorder 3

Compute Node Memory Node

e Observation: Memory requests can tolerate certain network reordering

Release networking ordering requirements
23

How to eliminate state from MN hardware

1. Reduce state in system protocol

2. Move state to compute node
3. Remove state from critical path

4. Optimize hard-to-remove state to bounded size

24

Move state to Compute Node >
Congestion and Flow Control

Known

Responses RDMA Network

App Process Per-Connec ‘n Metadata

Client

Requests Net B Suffer

ClioLib (congestion/in-cast
ctrl)

Asymmetric
Allow reorder

Client Side Stack

Congens® n Control

Compute Node

Memory Node

e Observation: CN knows the size of both requests and responses
Move congestion and in-cast control to CN side

wialsAg Aiowaj) jenpip

Nvdd pieog- up

25

Move state to Compute Node >

Handle Retry

__ CINRequgst Drop
App Process CN Request

ClioLib (congestion/in-cast
ctrl, retry, ...)

Asymmetric
Allow reorder

Client Side Stack

Compute Node

RDMA Network

Per-Connec ‘n Metadata
Net B Suffer

NetT Iuffer

Congens® n Control

N
~
S
]
>
3
S
<
v
3
)
3

Memory Node

e Observation: Network losses are rare and fully observed by CN

Let CN side software handling retry

Nvdd pieog- up

26

Move state to Compute Node >

Handle Retry

ClioLib (congestion/in-cast

ctrl, retry, ...) VETIA T

.......... P PHY & ETH!
Asymmetric

Allow reorder

N
~
-
Q
3
3
)
<
»
P
ETH & PHY g

Compute Node Memory Node

NWvdd pieog- up

27

How to eliminate state from MN hardware

1. Reduce state in system protocol

2. Move state to compute node

3. Remove state from critical path

4. Optimize hard-to-remove state to bounded size

28

Remove state from critical path >

Splitting Fast Path and Slow Path

Virtual Memory System

Metadata requests

remote_alloc(pid, size)

. . » Stateful, flexible, less strict latency
read/write (pid, va)

NVdQa p/ieog- up

Data requests (Performance criticall)
—>

o Strict latency and throughput

Memory Node

e Observation: Metadata and data requests have different state and performance requirements

29

Remove state from critical path >

Splitting Fast Path and Slow Path

Virtual Memory System
(Slow Control Path)

. . oftware on Processor
remote_alloc(pid, size) 4

read/write (pid, va) gg;aé g:n;zg,)SyStem

—_——

ardware Pipeline on ASIC

Memory Node

Splitting virtual memory system into fast path and slow path

O
S
®
O
=
Q
O
5
>
<

30

Remove state from critical path >

Splitting Fast Path and Slow Path

low Path (ARM)

Distributed Mgmt Vit Mem Mgmt Phys Mem Mgmt

remote_alloc(pid, size)

read/write (pid, va) ast Path (ASIC)

—>
TLB + DRAM Access

Memory Node

Solution: Splitting virtual memory system into fast path and slow path

NVdQa p/ieog- up

31

Remove state from critical path >

Handling Page Fault

Slow Path (ARM)

Distributed Mgmt Virt Mem Mgns

write (pid, va)
—>

Physical page

not allocated

Fast Path (ASIC)

NVdQd pieog- up

TLB + DR/\M Acc 2ss

Memory Node

e Observation: Access requests with pagefault need stateful allocation operations
32

Remove state from critical path >

Handling Page Fault

low Path (ARM)

Distributed Mgmt Virt Mem Mgmt Phys Mem Mgmt.

write (pid, va)
_—

_ ast Path (ASIC)
Physical page Clio
not allocated Net PF

. . LMY T AWV OV - Handler —

async buffers

NVdQa p/ieog- up

Only add 4NS when page fault happens

emory Node

* SBRATYANASARERSDLIAURSHFVAIbRARSIINY BREA SiRtelyhalQrrtigiRngrations

33

How to eliminate state from MN hardware

1. Reduce state in system protocol
2. Move state to compute node

3. Remove state from critical path

4. Optimize hard-to-remove state to bounded size

34

Optimize state to bundled size >
Traditional Page Table Design (Strawman)

low Path (ARM)

ast Path (ASIC)

PageTable Base
Pointer
PageTable PF

write (pid, va) Walker Handler

e Observation: Size of base pointer table and page tables grow with
number of clients, needs multiple DRAM accesses to walk page tables

NVdQa p/ieog- up

35

Optimize state to bundled size >

Hash-Based Page Table

low Path (ARM) Single DRAM

daCCesSS

Hash -
Page Table
H = hash(pid, va) PageTable PF
1S Fetch Handl
write AP_VA etcher andler

(@
S
®
O
=
Q
O
I
>
<

No table selection

Hash Page Table for bounded size and access time (single DRAM access)

36

“eliminate state” summary

e Reduce state in system protocol: Disaggregated protocol, consistency model, ...

e Move state to compute node: Congestion control, retry, dependency check, ...
e Remove state from critical path: Hardware pagefault, memory region, ...

e Optimize state to bounded size: Hash-based pagetable, atomic operations, ...

Low Performance Overhead

Throughp#yLatenVTail Latenv Low C(V

Flexibility)

Scalabiw

37

Extend computation offloading

Phys Mem

Page Fault
Alloc

Handler

«

remote_alloc S Q |Virtual Mem o

read/write I TLB _g Alloc %

App Process atOmiC_rdlwr/CaS ‘I\CE_ 8 E_
O > S

0 @ C

< <

- S —————_
remote_alloc(size)
read/write AP_VA

library (req retry, ordering) = = = = = = = = = = =

Ethernet NIC Network

CN (server or device) MN (device)

App Process

remote_alloc(size)
read/write AP_VA

CN (server or device)

Flexibility

pointer_chase
keyvalue_get/put

+

remote alloc
read/write

atomic _rd/wr/cas

App
Offload

Extended
API

TLB

Page Fault
Handler

5)
®
Q
¥
Q
<
&
L
—
=
®
Q
Y
S
T
O
/)
<

async buffer

async buffer

Extend computation offloading

App
Offload

Virtual Mem
Alloc

ARM (slow path)

Phys Mem
Alloc

MN (device)

39

Distributed System Support

Clio WWVirtual Memory

Write OxA000
—mm

App Process

ClioLib (dispatch requests)

Write OxB00O
-_— Distributed Mgmt

Client Side Stack

Compute Node Memory Nodes

e Multiple Clio boards can form a distributed system, single virtual memory space

can span multiple memory nodes.
40

Outline

Introduction

Motivation: Why we need real hardware

e (Clio Overview: Interface and overall approach

Design: How we remove “state”

Implementation and evaluation results

41

Implementation and Application

e Fast path and extended path implemented in hardware using SpinalHDL
e Prototype with Xilinx ZCU106 ARM-FPGA board

e |mplemented five applications
: Clio prototype on the Xilinx ZCU106 board
 |mage compression

e Multi-version object store
e key-value store

e pointer dereferencing

e data analytics operation

Evaluation Results
Basic Performance

e 100Gbps throughput, 2.8ps (avg) 3.2us (p99) latency
 Orders of magnitude lower tail latency than RDMA
 Outperforms Clover [ATC’20], LegoOS [0sDI'18], and HERD [SIGCOMM’14]

I RDMA-CX5 [Clio 16.8ms = (Clio == Clover =—— HERD - LegoOS
/
3.8 9 -

> 2.8}/-\ § 525

= 2.85 C — N

% — ;I) il):; 3.5 /

- g_ 1.9 w | = = $

A~ £ I g 179

! 0.95 L o) = = o) <

g =lE| | B¢ 0

4B 64B 256B 512B 1KB
Read Latency (16B) Remote Write Latency

43

Evaluation Results
Concurrent Clients and Memory Size

* Clio provides bounded access time for data requests
e Clio scales well with concurrent clients and total memory size

B RDMA-CX3 [RDMA-CX5 [Clio B RDMA-CX3 [RDMA-CX5 M Clio
5 4600
> >
: :
S 3.75 S 3450
© © _
— 5 25 = - == - 35 2300
% rN
<(E(3 1.25 Bounded Tail Latency even under scale
0 — g
0 4 8 12 18 20 1 200 400 600 800 1K
Number of Pages (2n) Number of Concurrent Clients

44

Evaluation Results

Disaggregated Applications

 Applications benefits from stable latency and scalability
 Extended path outperforms CPU based offloading [Herd-BlueField]

— RDMA — Clio " Clio B Clover HERD B HERD-BF(SmartNIC)

N
N

40
2.5X faster

e

YCSB Latency (1K)

—
@)

Task Finish Time
(S)
- N
o O

YCSB Latency
()
N
)

—
o

—
AN

o
o

200 400 600 800
Number of Concurrent Clients

Summary

We Dbuilt , a real hardware disaggregated memory system

Achieves all requirements of memory disaggregation:
performance, cost, scalability and flexibility.

46

Conclusion

Real benefits of hardware resource disaggregation comes from real hardware
Building OS functionalities in hardware is feasible but needs new design

The nature of disaggregation indicates new opportunities and challenges.

Co-designing software and hardware systems is key in building real hardware.

Is a starting point for more real disaggregated hardware

47

Other Recent/Ongoing Disaggregation
Works

e Network disaggregation (hardware implementation)
e Serverless computing on disaggregation

e Secure disaggregation (hardware implementation)

48

Thank you!

Get Clio at https://github.com/WukLab/Clio

wuklab.io

e (& WukLab)

http://wuklab.io
https://github.com/WukLab/Clio
http://wuklab.io

