
Centralized Coded Caching for Heterogeneous
Lossy Requests
Qianqian Yang and Deniz Gündüz

Dept. of Electrical and Electronic Eng., Imperial College London, UK
Email: {q.yang14, d.gunduz}@imperial.ac.uk

Abstract—Centralized coded caching of popular contents is
studied for users with heterogeneous distortion requirements,
corresponding to diverse processing and display capabilities of
mobile devices. Users’ distortion requirements are assumed to
be fixed and known, while their particular demands are revealed
only after the placement phase. Modeling each file in the database
as an independent and identically distributed Gaussian vector, the
minimum delivery rate that can satisfy any demand combination
within the corresponding distortion target is studied. The optimal
delivery rate is characterized for the special case of two users
and two files for any pair of distortion requirements. For the
general setting with multiple users and files, a layered caching
and delivery scheme, which exploits the successive refinability of
Gaussian sources, is proposed. This scheme caches each content in
multiple layers, and it is optimized by solving two subproblems:
lossless caching of each layer with heterogeneous cache capacities,
and allocation of available caches among layers. The delivery rate
minimization problem for each layer is solved numerically, while
two schemes, called the proportional cache allocation (PCA) and
ordered cache allocation (OCA), are proposed for cache allocation.
These schemes are compared with each other and the cut-set
bound through numerical simulations.

I. INTRODUCTION

Wireless data traffic is predicted to continue its exponential
growth in the coming years, mainly driven by the proliferation
of mobile devices with increased processing and display
capabilities, and the explosion of available online contents.
Current wireless architecture is widely acknowledged not to
be sufficient to sustain this dramatic growth. A promising
approach to alleviate the looming network congestion is to
proactively place popular contents, fully or partially, at the
network edge during off-peak traffic periods (see, for example,
[1]–[3], and references therein).

Conventional caching schemes utilize orthogonal unicast
transmissions, and benefit mainly from local duplication. On
the other hand, by coded caching, a novel caching mechanism
introduced in [3], further gains can be obtained by creating
multicasting opportunities even across different requests. This
is achieved by jointly optimizing the placement and delivery
phases. Coded caching has recently been investigated under
various settings, e.g., decentralized coded caching [5], online
coded caching [6], distributed caching [7], etc.

Most of the existing literature follow the model in [3], in the
sense that each file is assumed to have a fixed size, and users
are interested in the whole file. However, in many practical
applications, particularly involving multimedia contents, files
can be downloaded at various quality levels depending on the

channel and traffic conditions, or device capabilities. This calls
for the design of lossy caching and delivery mechanisms.

We model the scenario in which each user has a preset
distortion requirement known to the server. For example, a
laptop may require high quality descriptions of requested
files, whereas a mobile phone is satisfied with much lower
resolution. Users may request any of the popular files, and the
server is expected to satisfy all request combinations at their
desired quality levels. We model the files in the server as inde-
pendent sequences of Gaussian distributed random variables.
Exploiting the successive refinability [11] of Gaussian sources,
we derive the optimal caching scheme for the two-user, two-
file scenario. For the general case, we propose an efficient
coded caching scheme which considers multiple layers for
each file, and first allocates the available cache capacity among
these layers, and then solves the lossless caching problem with
asymmetric cache capacities for each layer. We propose two
algorithms for cache capacity allocation, namely proportional
cache allocation (PCA) and ordered cache allocation (OCA),
and numerically compare the performance of the proposed
layered caching scheme with the cut-set lower bound.

The most related work to this paper is [8], in which
Hassanzadeh et al. solve the inverse of the problem studied
here, and aim at minimizing the average distortion across users
under constraints on the delivery rate as well as the cache
capacities. In [9], authors also consider lossy caching taking
into account the correlation among the available contents,
based on which the tradeoff between the compression rate,
reconstruction distortion and cache capacity is characterized
for single, and some special two-user scenarios.

The rest of the paper is organized as follows. We present the
system model in Section II. Section III presents results on the
case with two files and two users. General case is investigated
in Section IV, including a lower bound on the delivery rate.
Numerical simulations are presented in Section V. Finally, we
conclude the paper in Section VI.

II. SYSTEM MODEL

We consider a server that is connected to K users through
a shared, error-free link. The server has a database of N
independent files, S1, ..., SN , where file Si consists of n
independent and identically distributed (i.i.d) samples Si,1, ...,
Si,n from a Gaussian distribution with zero-mean and variance
σ2, i.e., Si ∼ N (0, σ2), for i = 1, ..., N .

The system operates in two phases. In the placement phase,
users’ caches are filled with the knowledge of the number
of users and each user’s quality requirement; but without the
particular user demands. Each user has a cache of size Mkn
bits, whose content at the end of the placement phase is de-
noted by Zk, k = 1, ...,K. Users’ requests, d , (d1, ..., dK),
dk ∈ {1, ..., N}, are revealed after the placement phase.
In the delivery phase, the server transmits a single message
Xn

(d1,...,dK) of size nR bits over the shared link according
to all the users’ requests and the cache contents. Using Zk
and Xn

(d1,...,dK), each user k aims at reconstructing the file it
requests within a certain distortion target Dk.

An (n,M1, ...,MK , R) lossy caching code consists of K
cache placement functions:

fnk : Rn × · · · × Rn︸ ︷︷ ︸
N files

→ {1, ..., 2nMk} for k = 1, ...,K,

where Znk = fnk (S
n
1 , ..., S

n
N); one delivery function:

gn : Rn × ...× Rn︸ ︷︷ ︸
N files

× d1 × ...× dK︸ ︷︷ ︸
K requests

→ {1, ..., 2nR},

where Xn
(d1,...,dK) = gn(Sn1 , ..., S

n
N , d1, ..., dK); and K de-

coding functions:

hnk : {1, ..., N}K × {1, ..., 2nMk} × {1, ..., 2nR} → Rn,

where Ŝnk = hnk (d, Z
n
k , X

n). Note that each user knows the
requests of all other users in the delivery phase.

We consider quadratic (squared-error) distortion, and as-
sume that each user has a fixed distortion requirement Dk, k =
1, ...,K. Without loss of generality, let D1 ≥ D2 ≥ · · · ≥ DK .
Accordingly, we say that a distortion tuple D , (D1, ..., DK)
is achievable if there exists a sequence of caching codes
(n,M1, ...,MK , R), such that

lim
n→∞

1

n

n∑
j=1

(Sdk,j − Ŝk,j)2 ≤ Dk, k = 1, 2, ...,K,

holds for all possible request combinations d. We reemphasize
that d is not known during the placement phase, while D is
known. For a given distortion tuple D, we define the cache
capacity-delivery rate tradeoff as follows:

R?(M1, ...,MK) , inf{R : D is achievable.} (1)

Note that this problem is closely related to the classical
rate-distortion problem. Let R(D) denote the rate-distortion
function of a Gaussian source S ∼ N (0, σ2). We have
R(D) , 1

2 log2
σ2

D [10].
In the sequel we heavily exploit the successive refinability of

a Gaussian source under squared-error distortion measure [11].
Successive refinement refers to compressing a sequence of
source samples in multiple stages, such that the quality of
reconstruction improves, i.e., distortion reduces, at every stage.
A given source is said to be successively refinable under a
given distortion measure if the single resolution distortion-rate
function can be achieved at every stage. Successive refinement
has been extensively studied in the source coding literature;
please see [8] for its use in the caching context.

Fig. 1. Illustration of the five distinct cases of the cache capacities, M1 and
M2, depending on the distortion requirements of the users, r1 and r2.

III. OPTIMAL LOSSY CACHING: TWO USERS AND TWO
FILES (N = K = 2)

In this section, we characterize the optimal cache capacity-
delivery rate tradeoff for the lossy caching problem with two
users (K = 2) and two files (N = 2). The target average
distortion values for user 1 and user 2 are D1 and D2,
respectively, with D1 ≥ D2. Let r1 and r2 be the minimum
compression rates that achieve D1 and D2, respectively; that
is ri , R(Di) = 1

2 log2
σ2

Di
, i = 1, 2. This means that, to

achieve the target distortion of Di, the user has to receive a
minimum of nri bits corresponding to its desired file. We first
present Lemma 1 specifying the lower bound on the delivery
rate for given M1 and M2 in this particular scenario, followed
by the coded caching scheme achieving this lower bound. The
proof of the lemma is skipped due to space limitations.

Lemma 1. For the lossy caching problem with N = K = 2,
a lower bound on the cache capacity-delivery rate tradeoff is
given by

R?(M1,M2) ≥Rc(M1,M2) = max{r1 −M1/2,

r2 −M2/2, r1 + r2 − (M1 +M2),

r1/2 + r2 − (M1 +M2)/2, 0} bpss. (2)

The first three terms in (2) are derived from the cut-set
lower bound, which will be presented for the general scenario
in Theorem 1.

Based on (2), we consider five cases depending on the cache
capacities of the users, illustrated in Fig. 1:

Case i: M1 +M2 ≤ r1. In this case, Rc(M1,M2) = r1 +
r2 − (M1 +M2) bpss.

Case ii: M1 +M2 > r1, M1 ≤ r1, M2 ≤ 2r2 − r1. We
have Rc(M1,M2) =

r1
2 + r2 − M1+M2

2 bpss.
Case iii: M1 > r1, M2 ≤ 2r2, M2−M1 ≤ 2r2−2r1. Then

Rc(M1,M2) = r2 − M2

2 bpss.
Case iv: M1 ≤ 2r1, M2 > 2r2−r1, M2−M1 > 2r2−2r1.

It yields Rc(M1,M2) = r1 − M1

2 bpss.
Case v: M1 > 2r1, M2 > 2r2. Then Rc(M1,M2) = 0.
Nest, for each of these cases, we explain the coded caching

scheme that achieves the corresponding Rc(M1,M2). We as-
sume that the server employs an optimal successive refinement
source code, denoted by A(B) the source codeword of length

TABLE I
ILLUSTRATION OF CACHE PLACEMENT

First Layer Second Layer
S1 A1 A2 A3 A4 A5 A6 A7 A8

S2 B1 B2 B3 B4 B5 B6 B7 B8

User 1 A1 ⊕B1 A3, B3 A5, B5

User 2 A2 ⊕B2 A4, B4 A5, B5 A7, B7

Case i M1 M2 0 0 0 r1 −M1 −M2 0 r2 − r1
Case ii M1 r1 −M1 0 0 0 0 M1+M2−r1

2
r2 − M1+M2−r1

2
Case iii r1 − l1 − 2l2 0 l2 l2 l1 0 min{r2 − r1,M2/2} max{0, r2 − r1 −M2/2}
Case iv 0 r1 −M1 M1/2 M1/2 0 0 r2 − r1 0
Case v 0 0 0 0 r1 0 r2 − r1 0

nr2 bits that can achieve a distortion of D2 for file S1(S2).
Thanks to the successive refinability of Gaussian sources, a
receiver having received only the first nr1 of these bits can
achieve a distortion of D1. We refer to the first nr1 bits as
the first layer, and the n(r2−r1) remaining bits as the second
layer.

In each case, we divide the first layers of codewords A
and B into six disjoint parts denoted by A1, . . ., A6 and
B1, . . ., B6, and the second layers into two disjoint parts
denoted by A7, A8 and B7, B8, such that |Ai| = |Bi| for
i = 1, ..., 8, where |X| denotes the length of the binary
sequence X (normalized by n).

Table I illustrates the placement of contents in users’ caches
for each case.. The second and third rows illustrate how the
first and second layers are partitioned for each file. The fourth
and fifth rows indicate the cache contents of each user at the
end of the placement phase. In all the cases, user 1 caches
Z1 = {A1 ⊕ B1, A3, B3, A5, B5} and user 2 caches Z2 =
{A2 ⊕B2, A4, B4, A5, B5, A7, B7}. The entries from the 6th
row to the 10th specify the size of each portion in each case.
For example, the 6th row implies that in Case i, |A1| = |B1| =
M1, |A2| = |B2| =M2, |A6| = |B6| = r1−M1−M2, |A8| =
|B8| = r2 − r1, and the sizes of all other portions are equal
to 0, which is equivalent to dividing A(B) into four portions
A1(B1), A2(B2), A6(B6) and A8(B8). Thus, in the placement
phase, user 1 caches Z1 = {A1 ⊕ B1}, and user 2 caches
Z2 = {A2 ⊕ B2} so that |Z1| = M1 and |Z2| = M2, which
meets the cache capacity constraints. The cache placements of
the other 4 cases are presented in a similar manner in Table I.

Next, we focus on the delivery phase. We will explain
the delivered message in each case to satisfy demands d =
(S1, S2). All other requests can be satisfied similarly, without
requiring higher delivery rates.

Case i (M1 +M2 ≤ r1): The server sends B1, A2, A6, B6

and B8. Thus, the delivery rate is

R(M1,M2) = r1 + r2 − (M1 +M2) bpss.

Case ii (M1 +M2 > r1, M1 ≤ r1, M2 ≤ 2r2− r1): Server
delivers B1, A2 and B8. We have

R(M1,M2) =
r1
2

+ r2 −
M1 +M2

2
bpss.

Case iii (M1 > r1, M2 ≤ 2r2, M2 − M1 ≤ 2r2 −
2r1): The values of l1 and l2 in Table I are given as:

l1 = max{0,min{M1 − r1,M2/2 − (r2 − r1)}} and l2 =
max{0,M2/2−(r2−r1)− l1}. The server sends B1, B3⊕A4

and B8 in the delivery phase, which results in

R(M1,M2) = r2 −
M2

2
bpss.

Case iv (M1 ≤ 2r1, M2 > 2r2−r1, M2−M1 > 2r2−2r1):
The server sends B2, B3 ⊕A4 and we have

R(M1,M2) = r1 −
M1

2
bpss.

Case v (M1 > 2r1, M2 > 2r2): The cache capacities of
both users are sufficient to cache the required descriptions for
both files. Thus, any request can be satisfied from local caches
at desired distortion levels, and we have R(M1,M2) = 0.

Corollary 1. For N = K = 2, the proposed caching scheme
meets the lower bound in Lemma 1; and hence, it is optimal,
i.e., we have R∗(M1,M2) = Rc(M1,M2).

IV. LOSSY CODED CACHING: GENERAL CASE

In this section, we tackle the lossy content caching problem
in the general setting with N files and K users. Recall that the
distortion requirements are assumed to be ordered as D1 ≥
D2 ≥ · · · ≥ DK . Let rk = R(Dk), k = 1, ...,K. Exploiting
the successive refinability of Gaussian sequences, we consider
a layered structure of descriptions for each file, where the
first layer, called the r1-description, consists of nr1 bits, and
achieves distortion D1 when decoded. The kth layer, called the
(rk−rk−1)-refinement, k = 2, ...,K, consists of n(rk−rk−1)
bits, and having received the first k layers, a user achieves a
distortion of Dk.

The example in Section III illustrates the complexity of
the problem; we had five different cases even for two users
and two files. The problem becomes intractable quickly with
the increasing number of files and users. However, note
that only users k, k + 1, ...,K, whose distortion requirements
are lower than Dk, need to decode the kth layer for the
file they request, for k = 1, ...,K. Therefore, once all the
contents are compressed into K layers based on the distortion
requirements of the users employing an optimal successive
refinement source code, we have, for each layer, a lossless
caching problem. However, each user also has to decide how
much of its cache capacity to allocate for each layer. Hence,
the lossy caching problem is divided into two subproblems:

the lossless caching problem of each source coding layer, and
the cache allocation problem among different layers.

A. Coded Lossless Caching of Each Layer

Here we focus on the first subproblem, and investigate
centralized lossless caching with heterogeneous cache sizes,
which is unsolved in the literature, regarding each layer
separately. Consider, for example, the kth refinement layers
of all the files. There are only Lk , K − k + 1 users (users
k, k + 1, ...,K) who may request these layers. Let user j,
j ∈ {k, ...,K}, allocate Mj,k (normalized by n) of its cache
capacity for this layer. Without loss of generality, we order
users k, ...,K according to the cache capacity they allocate,
and re-index them, such that Mk,k ≤Mk+1,k ≤ · · · ≤MK,k.

We would like to have symmetry among allocated cache
capacities to enable multicasting to a group of users. Based on
this intuition, we further divide layer k into Lk sub-layers, and
let each user in {k, ...,K} allocate M1

k =Mk,k of its cache for
the first sub-layer, and each user in {k+ i−1, ...,K} allocate
M i
k =Mk+i−1,k−Mk+i−2,k of its cache for the ith sublayer,

for i = 2, . . . , Lk. Overall, we have Lk sub-layers, and users
k+ i−1, k+ i, ...,K allocate M i

k of their caches for sub-layer
i, whereas no cache is allocated by users k, k+1, ..., k+ i−2.

We denote by rik the size of the ith sub-layer of the kth
refinement layer, and by R(Lk, i,M

i
k, r

i
k, N) the minimum

required delivery rate for this sub-layer. The rates, rik, i =
1, ..., Lk, should be optimized jointly in order to minimize the
total delivery rate for the kth layer. The optimization problem
can be formulated as follows:

min
r1k,...,r

Lk
k

Lk∑
i=1

R(Lk, i,M
i
k, r

i
k, N) (3a)

s.t.

Lk∑
i=1

rik = rk − rk−1. (3b)

We explore the achievable R(Lk, i,M i
k, r

i
k, N) based on the

existing caching schemes in in [3] and [4], which are referred
to as coded delivery and coded placement, respectively. We
consider two cases:

Case 1) Lk < N . In this case, coded placement scheme
of [4] provides no global caching gain. Thus, we employ
only coded delivery, and illustrate this scheme in our setup
by focusing on the ith sub-layer: users k + i − 1 to K each
allocate M i

k of cache capacity, while users k to k+i−2 allocate
no cache for this sublayer. If rik ∈ {0,M i

k/N,M
i
kL

i
k/((L

i
k −

1)N),M i
kL

i
k/((L

i
k − 2)N), ...,M i

kL
i
k/N}, where Lik = Lk +

1− i, we have

R(Lk, i,M
i
k,r

i
k, N) = (i− 1) · rik (4)

+ rikL
i
k · (1−M i

k/r
i
kN) · 1

1 +M i
kL

i
k/r

i
kN

.

The first term on the right hand side is due to unicasting
to users k to k + i − 2, while the second term is the
coded delivery rate to users k + i − 1 to K given in
[3]. Based on the memory sharing argument, any point on

the line connecting two points, (r′1, R(Lk, i,M
i
k, r
′
1, N)) and

(r′2, R(Lk, i,M
i
k, r
′
2, N)), is also achievable, i.e., if rik ∈

[r′1, r
′
2], then we have

R(Lk, i,M
i
k, r

i
k, N) =

rik − r′1
r′2 − r′1

R(Kk, i,M
i
k, r
′
1, N)

+
r′2 − rik
r′2 − r′1

R(Kk, i,M
i
k, r
′
2, N), (5)

where r′1, r
′
2 ∈ {0,M i

k/N,M
i
kL

i
k/(L

i
k − 1)N,M i

kL
i
k/(L

i
k −

2)N, ...,M i
kL

i
k/N}; and if rik > M i

kL
i
k/N , we have

R(Lk, i,M
i
k, r

i
k, N) =(i− 1) · rik +

M i
kLk(Lk − 1)

2N
+ (rikM

i
kLk/N)× (Lk − i+ 1).

Case 2) Lk ≥ N . In this case, coded placement outperforms
coded delivery if the allocated cache capacity satisfies M i

k ≤
rik
Li

k

[4]. Note that for the ith sub-layer, there are i − 1 users
with no cache allocation. If i− 1 ≥ N , there will be no gain
with either schemes. When i − 1 < N and rik ≥ M i

kL
i
k, the

delivery rate of coded placement is

R(Lk, i,M
i
k, r

i
k, N) = Nrik −M i

kr
i
k(N − i+ 1). (6)

When 0 ≤ rik ≤M i
kL

i
k, the delivery rate is given by the lower

convex envelope of points (M i
kL

i
k, R(Lk, i,M

i
k,M

i
kL

i
k, N))

given by (6) and (rik, R(Lk, i,M
i
k, r

i
k, N)), and for

rik ∈ {0,M i
k/N,M

i
kL

i
k/((L

i
k − 1)N),M i

kL
i
k/((L

i
k −

2)N), ...,M i
kL

i
k/N}, given by (4).

B. Allocation of Cache Capacity
We propose two algorithms for cache allocation among

layers: proportional cache allocation (PCA) and ordered cache
allocation (OCA), which are elaborated in Algorithms 1 and 2,
respectively, where rk is as defined earlier, and we let r0 = 0.
.

Algorithm 1 Proportional Cache Allocation (PCA)
Require: r = r1, ..., rK

1) for all k ∈ 1, ...,K
2) for all i ∈ 1, ..., k
3) user k allocates ri−ri−1

rk
Mk to layer i

4) end for
5) end for

Algorithm 2 Ordered Cache Allocation (OCA)
Require: r = r1, ..., rK

1) for all k ∈ 1, ...,K
2) user k allocates all of its cache to the first i

layers, where ri−1 < Mk

N ≤ ri
3) end for

PCA allocates each user’s cache among the layers it may
request proportionally to the sizes of the layers, while OCA
gives priority to lower layers. The server can choose the one
resulting in a lower delivery rate. Numerical comparison of
these two allocation schemes will be presented in Section V.

Fig. 2. Delivery rate vs. cache capacity with identical cache sizes.

C. Lower Bound

The following lower bound is obtained using cut-set argu-
ments.

Theorem 1. (Cut-set Bound) For the lossy caching problem
described in Section II, the optimal achievable delivery rate
is lower bounded by

max
s∈{1,...,K}

max
U⊂{1,...,K}
|U|=s

∑
k∈U

rk −

∑
k∈U

Mk

bN/sc

 .

V. SIMULATIONS

In this section, we numerically compare the achievable
delivery rates for uncoded caching, the proposed caching
schemes, and the lower bound. In Fig. 2, we consider K = 10
users and N = 10 files in the server. Cache sizes of the
users are identical, i.e., M1 = M2 = · · · = M10 =
M . The distortion levels (D1, D2, ..., D10) are such that
(r1, r2, ..., r10) = (1, 2, ..., 10). While we observe that the
proposed coded caching scheme greatly reduces the delivery
rate, OCA performs better for small cache sizes, while PCA
dominates as M increases. Using memory sharing, we can
argue that the dotted curve in Fig. 2, which is obtained through
the convex combination of the delivery rates achieved by the
two proposed schemes, is also achievable.

In Fig. 3, we consider the same setting but with heteroge-
neous cache sizes, where Mk = 0.2kM , for k = 1, ..., 10. In
this setting, PCA allocates the same amount of cache to each
layer at different users, which creates symmetry among the
caches. The achievable delivery rates in Fig. 3 illustrate sig-
nificant improvements in coded caching with PCA over both
uncoded and OCA schemes in terms of the achievable delivery
rates. We observe that the gains become more significant as
the cache capacity, M , increases. While the lower bound is
not tight in general, we see in both figures that the PCA
performance follows the lower bound with an approximately
constant gap over the range of M values considered.

Fig. 3. Delivery rate vs. cache capacity with heterogeneous cache sizes.

VI. CONCLUSION

We investigated the lossy caching problem where users
have different distortion requirements for the reconstruction of
contents they request. We proposed a coded caching scheme
that achieves the information-theoretic lower bound for the
special case with two users and two files. Then, we tackled the
general case with K users and N files in two steps: delivery
rate minimization, which finds the minimum delivery rate for
each layer separately, and cache allocation among layers. We
proposed two different algorithms for the latter, namely, PCA
and OCA. Our simulation results have shown that the proposed
PCA scheme improves the required delivery rate significantly
for a wide range of cache capacities; and particularly when
the users’ cache capacities are heterogenous.

REFERENCES

[1] N. Golrezaei, K. Shanmugam, A. G. Dimakis, A. F. Molisch and
G. Caire, “Femtocaching: wireless video content delivery through dis-
tributed caching helpers,” in Proc. IEEE INFOCOM, Orlando, FL, Mar.
2012, pp.1107–1115.

[2] M. Gregori, J. Gomez-Vilardebo, J. Matamoros and D. Gündüz, “Wire-
less content caching for small cell and D2D networks,” to appear, IEEE
J. Sel. Areas Commun., 2016.

[3] M. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE
Trans. Inform. Theory, vol. 60, no. 5, pp. 2856-2867, May 2014.

[4] Z. Chen, P. Fan and K. B. Letaief, “Fundamental limits of caching:
Improved bounds for small buffer users,” ArXiv:1407.1935v2 cs.IT, Nov.
2015.

[5] M. A. Maddah-Ali and U. Niesen, “Decentralized coded caching attains
order-optimal memory-rate tradeoff,” IEEE/ACM Trans. Netw, vol. 23,
no. 4, pp. 1029-1040 Apr. 2014.

[6] R. Pedarsani, M. Maddah-Ali and U. Niesen, “Online coded caching,”
ArXiv:1311.3646 cs.IT, Nov. 2013.

[7] M. Ji, G. Caire and A. F. Molisch, “Fundamental limits of distributed
caching in D2D wireless networks,” in Proc. IEEE Inform. Theory
Workshop (ITW), Jeju Island, Korea, Oct. 2015, pp. 1–5.

[8] P. Hassanzadeh, E. Erkip, J. Llorca and A. Tulino, “Distortion-memory
tradeoffs in cache-aided wireless video delivery,” ArXiv:1511.03932
cs.IT, Nov. 2015.

[9] R. Timo, S. S. Bidokthi, M. Wigger and B. Geiger, “A rate-distortion
approach to caching,” in Proc. Int’l. Zurich Seminar (IZS), Zurich,
Switzerland, Mar. 2016.

[10] T. M. Cover and J. A. Thomas, Elements of Information Theory, John
Wiley & Sons, 2012.

[11] T. M. Cover and W. H. Equitz, “Successive refinement of information,”
IEEE Trans. Inform. Theory, vol. 37, no. 2, pp. 269–275 , Mar. 1991.

