
Update Aware Device Scheduling for

Federated Learning at the Wireless Edge

Mohammad Mohammadi Amiri∗, Deniz Gündüz†, Sanjeev R. Kulkarni∗, H. Vincent Poor∗

∗Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA
†Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, U.K.

Abstract—We study federated learning (FL) at the wireless
edge, where power-limited devices with local datasets train a
joint model with the help of a remote parameter server (PS).
We assume that the devices are connected to the PS through
a bandwidth-limited shared wireless channel. At each iteration
of FL, a subset of the devices are scheduled to transmit their
local model updates to the PS over orthogonal channel resources.
We design novel scheduling policies, that decide on the subset of
devices to transmit at each round not only based on their channel
conditions, but also on the significance of their local model
updates. Numerical results show that the proposed scheduling
policy provides a better long-term performance than scheduling
policies based only on either of the two metrics individually. We
also observe that when the data is independent and identically
distributed (i.i.d.) across devices, selecting a single device at
each round provides the best performance, while when the data
distribution is non-i.i.d., more devices should be scheduled.

I. INTRODUCTION

Today devices at the wireless network edge generate a huge

amount of data that can be exploited to make sense of the

state of a system. Internet-of-things (IoT) devices, drones,

or autonomous driving are prime examples where data from

the sensors must be continuously collected and processed.

Machine learning (ML) algorithms are being developed to

exploit these massive datasets. Current ML approaches are

limited to centralized algorithms, where a cloud server collects

all the data to train a powerful model. However, such

centralized algorithms are becoming increasingly costly since

offloading data from the devices to the could server is often not

feasible due to latency and privacy constraints. An alternative

approach is federated learning (FL), which enables ML at the

wireless edge while the data never leaves the devices.

FL utilizes the computational capabilities of the edge

devices to process their local datasets and collaboratively

train a learning model with the help of a parameter server

(PS) [1]. Due to unreliable links from the edge devices to

the PS with limited energy and bandwidth, it is essential to

develop approaches with limited communication requirements

[1]–[7]. All these works however ignore the physical layer

characteristics of the wireless network, and consider perfect

rate-limited links between the devices and the PS.

There have been recent studies on FL considering the

physical layer aspects of the wireless medium from the devices
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to the PS. In [8], optimization over batch size and wireless

resources is proposed to speed up FL. FL over a Gaussian

multiple access channel (MAC) with limited bandwidth is

studied in [9], and novel digital and analog approaches are

proposed for the transmissions from the devices. In [10], FL

over broadband wireless fading MAC is studied, where devices

perform channel inversion with the full knowledge of the

channel state information (CSI) to align their signals at the

PS. This approach is improved in [11] for bandwidth-limited

fading MAC by significantly reducing the communication

load. Beamforming techniques at a multi-antenna PS for

increasing the number of participating devices and overcoming

the lack of CSI at the devices are introduced in [12] and [13],

respectively. In [14], resource allocation across devices for FL

over wireless channels is studied. Frequency of participation

of the devices is introduced as a device scheduling metric in

[15]. Convergence analysis of FL over wireless networks under

various resource allocation schemes is provided in [16]–[18].

In this paper, we consider FL with digital transmission

from the edge devices to the PS over a block fading wireless

network with limited resources, where we design novel device

scheduling policies. We design resource allocation across the

participating devices to perform orthogonal (interference-free)

transmission. Due to resource limitations, we develop device

scheduling policies taking into account the channel conditions

and the significance of the local model updates at the devices

to make sure that the resources are allocated across the devices

with important messages and proper link capacity to convey

their messages. Numerical results illustrate the advantages of

considering both the channel conditions and the local model

updates at the devices for device scheduling over scheduling

based on either of the two metrics individually.

Notation: We denote the set of real, natural and complex

numbers by R, N and C, respectively. We let [i] , {1, . . . , i}.

An all zero entries vector of length i is denoted by 0i. We

denote a circularly symmetric complex Gaussian distribution

with real or imaginary component with variance σ2/2 by

CN
(
0, σ2

)
. Notation |·| represents the cardinality of a set

or the magnitude of a complex value, and the l2 norm of a

vector x is denoted by ‖x‖2. For a set S with only real values,

max[K]S returns a K-element subset of S with highest values.

II. SYSTEM MODEL

We consider FL across M wireless devices, training a

model parameter vector θ ∈ R
d collaboratively with the



help of a remote parameter server (PS), to which they are

connected through a shared wireless medium, to minimize

an empirical loss function F (θ) = 1
M

∑M

m=1 Fm (θ), where

Fm (θ) denotes the loss function at device m, m ∈ [M ].

A. FL System

In FL, each device typically performs a stochastic gradient

descent (SGD) algorithm to minimize an empirical loss

function with respect to its local dataset based on a globally

consistent model parameter vector received from the PS.

Let Bm denote the local dataset at device m, m ∈ [M ],
with |Bm| = B. The loss function at device m is given by

Fm (θ) = 1
B

∑
u∈Bm

f (θ,u), m ∈ [M ], where f(·, ·) is an

empirical loss function defined by the learning task. During the

t-th global iteration, having received global model parameter

vector θ(t) from the PS, device m performs a τ -step local

SGD, for some τ ∈ N. The i-th step of the local SGD at

device m, m ∈ [M ], corresponds to the following update:

θi+1
m (t) = θi

m(t)− ηim(t)∇Fm

(
θi
m(t)

)
, i ∈ [τ ], (1)

where ηim(t) denotes the learning rate, and we set θ1
m(t) =

θ(t). We further denote the model parameter vector after the

τ -th local update at device m by θm(t+1), i.e., θm(t+1) =
θτ+1
m (t), m ∈ [M ].

After receiving the updates from the devices, the PS updates

the global model parameter vector θ(t+ 1) by averaging the

results of the τ -step local updates computed at the device, i.e.,

θ(t+ 1) =
1

M

∑M

m=1
θm(t+ 1). (2)

This updated vector is then shared among the devices for

further computations until it converges. Having defined the

local model update at device m as follows:

∆θm(t) , θm(t+ 1)− θ(t), m ∈ [M ], (3)

the update in (2) corresponds to

θ(t+ 1) = θ(t) +
1

M

∑M

m=1
∆θm(t). (4)

When FL is implemented over a shared wireless medium,

it is not reasonable to expect all the devices to be able

to convey their model updates to the PS reliably, due to

power and bandwidth constraints. When the available channel

resources are shared between the devices, each device would

be allocated only a very limited bandwidth. Information that

can be conveyed to the PS can be further limited due to fading.

In this paper, we consider scheduling a K-element subset of

the devices, denoted by M(t) ⊂ [M ], where K = |M(t)|, at

each global iteration step t, for the most efficient utilization of

the limited resources. The PS determines the set of scheduled

devices, and informs them for transmission at each round.

Accordingly, the PS updates the global model parameter vector

based on the received local model updates from only the

scheduled devices as follows:

θ(t+ 1) = θ(t) +
1

K

∑
m∈M(t)

∆θm(t). (5)

B. Wireless Medium

We consider a wireless medium with limited bandwidth

from the devices to the PS to transmit the local model updates

∆θm(t) ∈ R
d, ∀m ∈ [M ]. We assume a single-carrier

block fading wireless channel with n symbols (time slots)

using TDMA for transmission from the devices to the PS1.

We denote the length-n input to the channel at device m
by xm(t) ∈ C

n, where xm(t) = 0n, if m /∈ M(t). The

channel gain from device m to the PS is represented by

hm(t) ∈ C, which is independent and identically distributed

(i.i.d.) according to CN (0, 1). The received signal at the PS

is added to an independent noise vector with each entry i.i.d.

according to CN (0, σ2). We assume that, at each iteration step,

the CSI is known by the devices and the PS. The channel input

of device m at the t-th iteration is a function of the scheduling

policy, channel gain hm(t), local dataset Bm, and ∆θm(t),
m ∈ [M ]. For a total of T global iterations, we impose the

following average transmit power constraint on device m:

1

T

∑T

t=1
E
[
||xn

m(t)||22
]
≤ P̄ , ∀m ∈ [M ], (6)

where the expectation is over the randomness of the channel.

The goal at the PS is to recover 1
K

∑
m∈M(t) ∆θm(t),

which is used to update the global model parameters as in

(5). The PS instead uses an estimate of 1
K

∑
m∈M(t) ∆θm(t)

upon receiving the noisy observation y(t) from the wireless

medium to update the global model parameter vector, which

is then shared among the devices through an error-free shared

link for further computations.

We focus on digital transmission from the devices to the

PS, where each scheduled device employs data compression

followed by channel coding to transmit its local model updates.

We design various scheduling policies, and perform resource

allocation across the scheduled devices to have interference-

free communication from the participating devices to the PS.

In this digital approach, a capacity achieving channel code

followed by discrete quantization at a resolution afforded by

the channel capacity is employed by each scheduled device to

communicate over the wireless medium.

With the resource allocation approach, device m is allocated

nm distinct time slots, such that
∑M

m=1 nm = n, where nm =
0, if m /∈ M(t). For large enough nm, we assume that the

Shannon rate at device m can be achieved; that is, the total

amount of information that can be conveyed from device m
to the PS is Rm(t) = nmCm(t), m ∈ [M ], where Cm(t) ,

log2

(
1 + |hm(t)|2 Pm(t)/σ2

)
and Pm(t) , E

[
||xn

m(t)||22
]
.

III. DIGITAL SGD (D-SGD) QUANTIZATION SCHEME

Here we present the data compression scheme employed by

the devices for digital transmission over the wireless channel.

We utilize the technique introduced in [19], and extended in

[9] for FL over a bandwidth-limited wireless medium.

It is worth noting that, at global iteration t, device m intends

to transmit ∆θm(t), computed after the τ -step SGD algorithm,

1The single-carrier assumption is for ease of presentation, and the results
in this paper can be extended to multi-carrier systems.



m ∈ [M ]. For this purpose, it first quantizes ∆θm(t) by setting

all but the largest qm(t) and the smallest qm(t) entries to zero

(in practice, we typically have qm(t) ≪ d). It then computes

the average of the positive and negative entries denoted by

q+m(t) and q−m(t), respectively. If q+m(t) ≥ |q−m(t)|, it sets all

the negative entries to zero and all the positive entries to q+m(t),
and vice versa, if q+m(t) < |q−m(t)|. We denote the resultant

quantized vector with qm(t) nonzero entries at device m by

∆θ̂m (qm(t)), m ∈ [M ]. To transmit ∆θ̂m (qm(t)), device m
requires 32 bits representing the real value q+m(t) or q−m(t)
plus 1 bit for its sign, and no more than log2

(
d

qm(t)

)
bits

representing the locations of the nonzero entries, m ∈ [M ].
Thus, device m needs to transmit a total of

rm (qm(t)) = log2

(
d

qm(t)

)
+ 33 bits, m ∈ [M ]. (7)

The D-SGD quantization scheme at device m is characterized

by qm(t), and represented by D-SGD (qm(t)) resulting

∆θ̂m (qm(t)), m ∈ [M ]. The value of qm(t) is a design

parameter that is determined for different scheduling policies,

described in the next section, to satisfy the capacity limitation

of transmission from device m to the PS, m ∈ [M ].

IV. DEVICE SCHEDULING POLICIES

Here we present various scheduling policies identifying

the devices sharing the wireless resources at each iteration.

Having more devices scheduled, each device is allocated

less resources and contributes to the learning task with

less accurate information about the global model parameters.

However, if more devices are scheduled, the global model

parameters are trained by exploiting a larger fraction of the

data samples. The goal is to identify the scheduled devices

resulting in the best performance.

After receiving θ(t) from the PS, all the devices perform

the τ -step SGD algorithm as in (1). However, only K ≤ M
devices in M(t) are scheduled for transmission at iteration

t, and the PS updates the global model parameter vector as

follows:

θ(t+ 1) = θ(t) +
1

K

∑
m∈M(t)

∆θ̂m(qm(t)). (8)

We take into account the channel conditions and the

significance of the local model updates at the devices as

the scheduling metrics. We study four different scheduling

policies, namely thr best channel (BC), best l2 norm (BN2),

best channel-best l2 norm (BC-BN2), and best l2 norm-

channel (BN2-C) schemes, which we explain below.

Due to the natural symmetry of the considered model across

the devices, both in terms of the channel statistics and the local

model updates, it is reasonable to assume that the probability

of scheduling each device will be the same, K/M .2 Hence, the

average transmit power constraint can be rewritten as follows:

K

MT

∑T

t=1
Pm(t) ≤ P̄ , ∀m ∈ [M ]. (9)

2We will indeed see below that this assumption holds for all four scheduling
policies considered in this paper.

For simplicity, we assume a fixed power over time for the

scheduled devices, Pm(t) = MP̄/K, ∀m ∈ M(t), ∀t ∈ [T ].

A. BC Scheduling Policy

BC schedules devices based only on their channel gains.

This generalizes the approach studied in [11], where only a

single device is scheduled based on the channel conditions.

With BC, the PS does not require any information about the

model updates at the devices, and it schedules K devices with

the highest channel gain magnitudes; that is,

M(t) = max[K] {|h1(t)| , ..., |hM (t)|} . (10)

Having no knowledge about the model updates at the devices,

the PS allocates the time slots so that the scheduled devices

have the same capacity. Given M(t) = {m1, ...,mK}, we set

nm1
Rm1

(t) = nm2
Rm2

(t) = · · · = nmK
RmK

(t), (11)

which, having
∑K

k=1 nmk
= n, results in

nmk
=

∏K

i=1,i6=k Rmi
(t)

∑K

j=1

∏K

i=1,i6=j Rmj
(t)

n, k ∈ [K]. (12)

After the above resource allocation scheme, device mk

performs the quantization scheme D-SGD(qmk
(t)), with

qmk
(t) set as the largest integer satisfying rm (qmk

(t)) ≤
nmk

Rmk
(t), k ∈ [K], and transmits the quantized bits to the

PS over the time slots allocated to it.

B. BN2 Scheduling Policy

With BN2, the scheduling desicion depends only on the

significance of the model updates at the devices captured

by the l2 norm of the model update, ‖∆θm(t)‖2. The

transmission takes place in two phases, where in the first

phase, having computed ∆θm(t), device m sends ‖∆θm(t)‖2
reliably to the PS, ∀m ∈ [M ]. The PS then schedules K
devices with the largest ‖∆θm(t)‖2 values, i.e.,

M(t) = max[K] {‖∆θ1(t)‖2 , ..., ‖∆θM (t)‖2} . (13)

The time slots are allocated to the scheduled devices by

the PS such that their link capacities are proportional to

the significance of their local model updates; that is, for

mi,mj ∈ M(t), ∀i, j ∈ [K], i 6= j, we set

nmi
Rmi

(t)

nmj
Rmj

(t)
=

‖∆θmi
(t)‖2∥∥∆θmj
(t)

∥∥
2

. (14)

Having
∑K

k=1 nmk
= n, it follows that, for k ∈ [K],

nmk
=

∏K

i=1,i6=k Rmi
(t) ‖∆θmi

(t)‖2∑K

j=1

∏K

i=1,i6=j Rmj
(t)

∥∥∆θmj
(t)

∥∥
2

n. (15)

In the second phase of transmission, device mk transmits the

result of D-SGD(qmk
(t)), where qmk

(t) is set as the largest

integer satisfying rmk
(qmk

(t)) ≤ nmk
Rmk

(t), k ∈ [K].

C. BC-BN2 Scheduling Policy

BC-BN2 generalizes BC and BN2 by taking into account

both the channel conditions and the significance of the model



updates at the devices. The PS first identifies Kc devices with

the best channel conditions, for some K ≤ Kc ≤ M . Then, K
devices from these Kc devices with the most significant model

updates are scheduled. Formally, the PS first selects the best

Kc devices according to their channel states as follows:

Mc(t) , max[Kc] {|h1(t)| , ..., |hM (t)|} . (16)

Only these selected Kc devices share ‖∆θm(t)‖2 with the PS,

which schedules K devices among them as follows:

M(t) = max[K] {‖∆θm(t)‖2 , ∀m ∈ Mc(t)} . (17)

Having known ‖∆θmk
(t)‖2 , ∀mk ∈ M(t), we follow the

same resource allocation scheme as BN2. Thus, device mk,

sends ∆θ̂mk
(qmk

(t)) = D-SGD (qmk
(t)) to the PS, where

qmk
(t) is set as the largest integer that satisfies rm (qmk

(t)) ≤
nmk

Rmk
(t), k ∈ [K], where nmk

is given in (15).

We highlight that BC-BN2 for Kc = K and Kc = M
corresponds to BC and BN2, respectively.

D. BN2-C Scheduling Policy

With BN2-C, each device performs the D-SGD quantization
scheme assuming accessibility to all the time slots, and finds
the resultant quantized vector, whose l2 norm is sent to
the PS, based on which it schedules the devices. To be
more precise, device m calculates the D-SGD quantization
parameter, denoted by q∗m(t), satisfying rm (q∗m(t)) ≤ Rm(t),
∀m ∈ [M ], based on which it computes ∆θ̂m (q∗m(t)) =
D-SGD (q∗m(t)); it then shares ||∆θ̂m (q∗m(t)) ||2 with the PS.
The PS schedules devices according to the following policy:

M(t) = max[K]

{
||∆θ̂1 (q

∗

1(t)) ||2, ..., ||∆θ̂M (q∗M (t)) ||2
}
, (18)

and, given mi,mj ∈ M(t), allocates the time slots to the

scheduled devices such that

nmi
Rmi

(t)

nmj
Rmj

(t)
=

||∆θ̂mi
(q∗mi

(t))||2

||∆θ̂mj
(q∗mj

(t))||2
, ∀i, j ∈ [K], i 6= j. (19)

With
∑K

k=1 nmk
= n, it follows that, for k ∈ [K],

nmk
=

∏K

i=1,i6=k Rmi
(t)||∆θ̂mi

(q∗mi
(t))||2

∑K

j=1

∏K

i=1,i6=j Rmj
(t)||∆θ̂mj

(q∗mj
(t))||2

n. (20)

Scheduled device m performs the D-SGD(qm(t)) quantization

scheme, where qm(t) is set as the largest integer satisfying

rm (qm(t)) ≤ nmRm(t), with nm given in (20), ∀m ∈ M(t).

Remark 1. We highlight that BN2-C intertwines the channel

conditions and the significance of local model updates

to schedule the devices. Unlike BN2 and BC-BN2, where

‖∆θm(t)‖2 is directly used for scheduling, BN2-C utilizes the

output of the D-SGD quantization scheme, ||∆θ̂m (q∗m(t)) ||2,

for scheduling, where q∗m(t) is a function of the channel gain.

This novel technique comes with a computational cost at the

devices due to the extra computation of ∆θ̂m (q∗m(t)). On the

other hand, BC requires the smallest computational overhead

at the devices. In this work, we do not study the computational

complexity at the devices, and the main goal is to utilize the

limited communication resources efficiently.
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Fig. 1: Performance of different scheduling policies for IID

data distribution with M = 40, B = 1000 and n = 5× 103.

In the longer version of this paper [20], we have established

a convergence result for FL with device scheduling, where

devices have limited capacity to convey their messages, for a

slightly different quantization technique than D-SGD.

V. NUMERICAL EXPERIMENTS

Here we compare the performance of different scheduling

policies for image classification of the MNIST dataset [21]

with 60000 training and 10000 test samples. We train a multi-

layer perceptron neural network with a single hidden layer

with 256 parameters, in which d = 203530, where softmax is

utilized as the activation function of the output layer.

We consider two data distribution scenarios: IID data

distribution, where the data samples at each device are selected

at random from the training data samples; and nonIID data

distribution, where at each device two labels/classes are chosen

randomly, and half of the local data samples are selected at

random from each chosen label/class. We utilize ADAM [22]

and AdaGrad [23] optimizers to train the neural network for

the IID and nonIID data distribution scenarios, respectively.

We consider M = 40 devices, each with B = 1000 training

data samples, n = 5×103 symbols, noise variance σ2 = 1 and

average power constraint P̄ = 1. We set the number of local

iterations at the devices to τ = 3. We measure the performance

as the accuracy with respect to the test data samples, called

test accuracy, versus the iteration count at the PS, t.
In Fig. 1, we compare the performance of different

scheduling policies for IID data distribution. We aim to find

the value of K resulting in the best performance for each

scheduling policy. To this end, we consider two different

values, K = 1 and K = 10, where for BC-BN2 we set

Kc = 10 and Kc = 20, respectively. We observe that, for

each scheduling policy, increasing K deteriorates the accuracy

in terms of both the convergence speed and the accuracy

level. We did not include the results for other K values, as

we have observed that the performance of each scheduling

policy deteriorates with K. Thus, we focus on K = 1, which,
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Fig. 2: Performance of different scheduling policies for nonIID

data distribution with M = 40, B = 1000 and n = 5× 103.

based on our observations, provides the best performance. This

illustrates that, with IID local data samples, sending a more

accurate update from a single device (which is scheduled at

random thanks to the symmetry across the devices in our

model) provides a faster convergence rate in the long-term

than sending less accurate updates from multiple devices.

For comparison, we provide the final accuracy level of each

scheduling policy for K = 1. These are given by 91.2%,

91.7%, 92.3% and 93.1% for BC, BN2, BC-BN2 and BN2-

C, respectively. As can be seen, BN2-C provides the best

performance in terms of the convergence speed as well as the

final accuracy level. The improvement of BC-BN2 over BN2

is marginal, but both outperform BC. These results illustrate

that, given IID data distribution, scheduling devices according

to both the significance of their model updates and their

channel conditions provides gains in terms of accuracy. Also,

from the superiority of BN2 over BC, we conclude that, to

obtain the best accuracy performance for the IID scenario,

the significance of the model updates plays a more important

role than the channel conditions. On the other hand, for large

K, such as K = 10, it is important to consider the channel

conditions for scheduling to make sure that the scheduled

devices can send enough bits rather than scheduling devices

based only on l2 norm of their model updates as with BN2.

In Fig. 2, we investigate the performance of these different

scheduling policies for a nonIID data distribution scenario. As

can be seen, for all the scheduling policies, unlike the IID case,

scheduling a single device results in instability of the learning

performance appearing as fluctuations in their accuracy levels

over iterations. In a nonIID scenario, the local model update

at each device is biased due to the biased local datasets, and

scheduling a single device provides inaccurate information and

causes instability in the performance in the long-term. On

the other hand, increasing K (sharing resources among more

devices) reduces the accuracy at which the scheduled devices

can transmit their model updates. As a result, it is expected

that a moderate K value would provide the best performance,

which is confirmed with our simulation results. For the setting

under consideration, K = 10 provides the best accuracy

performance for BC, BC-BN2 and BN2-C, while K = 5
performs better for BN2, although K = 10 shows a more

stable accuracy performance with a higher final accuracy level.

Similarly to the IID scenario, we observe that it is essential to

consider the channel conditions for higher K values in order

to make sure that the devices can transmit enough information.

Also, as can be seen from the performance of BC for K =
10, when scheduling based only on the channel conditions,

the performance is more unstable, unless a relatively high

number of devices are scheduled, in which case the accuracy

level deteriorates. We highlight that, compared to the channel

conditions, scheduling based on the significance of the model

updates has a greater impact on the performance at the initial

iterations when the gradients are more aggressive. On the other

hand, it is important to consider the channel conditions at later

iterations when approaching the optimum solution, since the

transmission is more noisy, and a more accurate estimate of

the model update at each participating device is required for

robust communication against the noise. For comparison, the

best final accuracy levels for BC, BN2, BC-BN2 and BN2-C

are 78%, 77.5%, 81.5% and 81.7%, respectively. It can be seen

that BN2-C and BC-BN2 outperform BC and BN2 in terms of

the accuracy level, highlighting the importance of scheduling

devices based on both the channel conditions and the model

updates at the devices for the nonIID scenario.

VI. CONCLUSIONS

We have studied FL under limited communication resources

considering block fading channels from the devices to the PS.

We have considered orthogonal digital transmissions from the

devices to the PS, and studied various scheduling algorithms

to decide which devices participate in the learning process at

each round. There is a natural tradeoff between the number

of devices participating and the fraction of resources allocated

to each device. With more devices scheduled for transmission,

the global model parameters are updated at the PS by utilizing

a larger fraction of the training data samples; while, each

device provides a less accurate estimate of its local model

update due to the limited resources available per device.

We have proposed novel device scheduling algorithms that

consider not only the channel conditions of the devices, but

also the significance of their local model updates. Experiments

have shown that it is beneficial to schedule devices based on

both their channel conditions and the significance of their

model updates rather than considering only one of the two

metrics. Also, the optimal number of scheduled devices for

each considered policy depends on the type of data distribution

across devices; for an IID scenario, it is better to schedule a

single device, whereas for a nonIID scenario, scheduling a

moderate number of devices provides the best performance.
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