
Reliable Cooperative Source Transmission with
Side Information
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Abstract— We consider reliable transmission of a discrete
memoryless source over a cooperative relay broadcast channel,
where both the relay and the destination terminals want to
reconstruct the source; and over a relay channel, where only the
destination terminal wishes to obtain a lossless reconstruction. We
assume that both the relay and the destination have correlated
side information. We find the necessary and sufficient conditions
for a general cooperative relay broadcast channel, and for a
physically degraded relay channel when the side information at
the destination is a degraded version of the relay side information.
Our achievability results are based on operational source-channel
separation. We utilize source and channel codes that interact only
by passing along decoded source codewords from one block to
another.

I. INTRODUCTION

We have a limited understanding of general source-
channel matching conditions for multiuser networks. Shan-
non’s source-channel separation theorem fails and necessary
and sufficient conditions for reliable transmission are not
known even for simple scenarios such as transmitting corre-
lated sources over a multiple access channel [1] or over a
broadcast channel [2]. There are a limited number of cases
such as [3]-[7] for which the lossless source transmission
problem is completely solved.

In this paper, we first consider reliable transmission of a
discrete memoryless (DM) source over a cooperative relay
broadcast (CRB) channel where both the relay and the desti-
nation have their own correlated side information. In the CRB
scenario, both the relay and the destination terminals want
a lossless reconstruction of the source signal. We find the
necessary and sufficient conditions for this problem and show
that a novel strategy based on superposition block Markov
encoding and backward decoding in the joint source-channel
coding setting achieves the optimal performance.

Next, we consider transmission of a DM source over a relay
channel, where only the destination terminal is interested in
reconstructing the source in a lossless fashion, while the relay
behaves as a helper based on both its received signal and
correlated side information. While the sufficiency conditions
established for the CRB case apply for the general relay
channel as well, we show that the same conditions are also

This work is partially supported by NSF grant No. 0430885 and No.
0635177.

necessary for a physically degraded relay channel when the
source and the destination side information are independent
given the relay side information, that is, the destination side
information is degraded with respect to the relay side infor-
mation.

In [5] it is shown that, when broadcasting a common source
to multiple receivers, each with its own side information,
Shannon’s source-channel separation (informational separa-
tion) fails, and the optimal performance can be achieved by
joint source-channel coding. Tuncel [5] proves the optimality
of operational separation and considers separate source and
channel coders that interact at the decoding stage. Our results
show that operational separation is also optimal for the more
general CRB channel. In our strategy, which is based on
block Markov encoding, the source and channel encoders and
decoders at each block act independently; however, we have
explicit information transfer among the source and channel
coders of consecutive blocks. Therefore, even though the strict
informational separation in Shannon sense does not hold, our
strategy allows the use of individually optimized source and
channel codes, thereby achieving modularity in the system
design.

In a related work [8], lossless transmission over a relay
channel with side information only at the relay terminal is
considered. An achievable scheme using joint source-channel
coding with list decoding is proposed. In [9], we consider
lossy transmission of a Gaussian source over a Gaussian relay
channel with correlated relay side information, and propose
several achievable schemes together with a lower bound on
the average distortion.

The paper is organized as follows: In Section II, we intro-
duce the system model and in Section III we state our main
results. In Section IV, we give the proofs of the main theorems.
Finally, we discuss our results in Section V and conclude the
paper in Section VI.

Throughout the paper, we will denote random variables by
capital letters, sample values by the respective lower case
letters, and the alphabets by the respective calligraphic letters.
The random vector (X1, . . . , Xn) will be denoted by Xn, and
the complement of a certain element Xi in a vector Xn by
Xc

i , (X1, . . . , Xi−1, Xi+1, . . . , Xn).
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Fig. 1. Relay channel model with node T0 acting as the source node, node
T2 as the destination node, and T1 as the relay node.

II. PROBLEM SETUP

We have a relay network composed of three terminals (see
Fig. 1): T0, T1, T2, which are denoted as the source, the
relay and the destination node, respectively. The underlying
discrete memoryless (DM) relay channel is characterized by
the conditional distribution

p(yn
1 , yn

2 |xn
0 , xn

1 ) =
n∏

i=1

pY1,Y2|X0,X1(y1,i, y2,i|x0,i, x1,i), (1)

where Xj , Yi, j = 0, 1, i = 1, 2 denote the inputs and outputs
at Tj and Ti, respectively.

We consider discrete memoryless i.i.d. sources (S0, S1, S2)
which are arbitrarily correlated according to a joint distribution
p(s0, s1, s2) ∈ P(S0 × S1 × S2), that is, {S0,i, S1,i, S2,i}∞i=1

are generated i.i.d according to p(s0, s1, s2) over a finite
alphabet S0 × S1 × S2.

We assume, node Tj has access to source Sj , for j = 0, 1, 2.
In the cooperative relay broadcast scenario, the goal of the
source node is to transmit S0 to both the relay and the
destination terminals reliably in Shannon sense. In the relay
channel scenario only the destination node needs to reconstruct
the source signal losslessly.

Node T0 maps its observation Sm
0 to a channel codeword

of length-n by the encoding function f
(m,n)
0 : Sm → Xn

0 , i.e.,
Xn

0 = f
(m,n)
0 (Sm

0 ) . The relay’s channel input at each time
instant i, denoted as X1,i can depend on the previous channel
outputs Y i−1

1 and its side information Sm
1 . Hence the relay

has encoding functions f
(m,n)
1 = {f (m,n)

1,1 , . . . , f
(m,n)
1,n } such

that

X1i = f
(m,n)
1,i (Y1,1, . . . , Y1,i−1, S

m
1 ), 1 ≤ i ≤ n.

The decoder at node Ti, i=1,2, maps the channel output
Y n

i and its side information Sm
i to the estimate Ŝm

i by the
decoding function

g
(m,n)
i : Yn

i × Sm
i → Sm

0 , (2)

i.e., Ŝm
i = g

(m,n)
i (Y n

i , Sm
i ). Note that, we do not have g

(m,n)
1

in the relay channel scenario.

The probability of error for the cooperative relay broadcast
system is defined as

P (m,n)
e = Pr


 ⋃

i=1,2

{Ŝm
i 6= Sm

0 }

 , (3)

while for the relay channel model, we have

P (m,n)
e = Pr

{
Ŝm

2 6= Sm
0

}
, (4)

Definition 2.1: We say that the rate b is achievable if, there
exist a sequence of encoders f

(m,n)
j , and decoders g

(m,n)
j ,

j = 1, 2 with b = n/m, such that probability of error vanishes,
i.e., P

(m,n)
e → 0, as m,n →∞.

Definition 2.2: A relay channel is said to be physically
degraded if, p(y1, y2|x0, x1) can be written in the form

p(y1, y2|x0, x1) = p(y1|x0, x1)p(y2|y1, x1),

or, equivalently, if X0 → (X1, Y1) → Y2 form a Markov chain
for all input distributions p(x0, x1).

III. MAIN RESULTS

This section contains the main results of this paper while
the proofs are left to Section IV. Section V contains the dis-
cussions of these results. The first theorem states the necessary
and sufficient conditions for the CRB channel scenario. In the
next theorem we show that the same conditions hold in the
case of a degraded relay channel as well, when the sources
satisfy a certain Markov chain condition. Finally, we consider
a relay channel with feedback.

Theorem 3.1: For the cooperative relay broadcast (CRB)
channel with relay and receiver side information as outlined
in Section II, rate b is achievable if,

H(S0|S1) < bI(X0; Y1|X1), (5)
H(S0|S2) < bI(X0, X1;Y2), (6)

for some input distribution p(x0, x1).
Conversely, if rate b is achievable, then there exists an input

distribution p(x0, x1) such that (5)-(6) are satisfied with <
replaced by ≤.

Proof: See Section IV-A.
The following corollary of Theorem 3.1 was also proved in

[5] using a different coding scheme for the direct part.
Corollary 3.2: For lossless broadcasting of a common

source S0 over a broadcast channel to two terminals each
with its own correlated side information S1 and S2, rate b
is achievable if,

H(S0|S1) < bI(X0; Y1), (7)
H(S0|S2) < bI(X0; Y2), (8)

for some input distribution p(x0).
Conversely, if rate b is achievable, then there exists an

input distribution p(x0) such that (7)-(8) are satisfied with <
replaced by ≤.

Proof: See Section IV-B.



Note that the sufficiency conditions of Theorem 3.1 hold
for the relay channel scenario as well. The following theorem
proves that the same conditions are also necessary for a
degraded relay channel with degraded side information.

Theorem 3.3: For a relay channel with relay and destination
side information as outlined in Section II, rate b is achievable
if conditions (5)-(6) hold. Conversely, for a degraded relay
channel with relay and destination side information satisfying
the Markov chain condition S0−S1−S2, if rate b is achievable,
then there exists an input distribution p(x0, x1) such that (5)-
(6) are satisfied with < replaced by ≤.

Proof: See Section IV-C.
Finally, for an arbitrary relay channel, we consider perfect

feedback from the destination output to the relay terminal.
Theorem 3.4: For an arbitrary relay channel with perfect

feedback from the destination channel output to the relay
terminal, rate b is achievable if,

H(S0|S1) < bI(X0; Y1, Y2|X1), (9)
H(S0|S2) < bI(X0, X1;Y2), (10)

for some input distribution p(x0, x1). Conversely, assuming
that S0 − S1 − S2 form a Markov chain for an arbitrary relay
channel with perfect destination-relay channel feedback, if rate
b is achievable then, (9)-(10) hold with < replaced by ≤.

Proof: We can now view the relay output as (Y1, Y2),
hence we have the Markov chain X0− (X1, Y1, Y2)−Y2, and
the achievability and converse follow from applying Theorem
3.3.

IV. PROOFS OF THE RESULTS

A. Proof of Theorem 3.1

1) Achievability: Fix p(x0, x1) such that conditions (5)-(6)
hold. We use superposition block Markov encoding, sequential
decoding at the relay and backward decoding at the destina-
tion.

Code generation: Generate M = exp[m(H(S0) + ε1)] m-
length i.i.d. codewords with

∏m
t=1 p(s0) and label them as

w(i), i ∈ [1,M ]. Then randomly partition these codewords
into M1 = exp[m(H(S0|S1) + ε2)] bins and enumerate these
bins with index w1 ∈ [1,M1]. We call these bins as the relay
bins.

Independent from the relay bins, randomly partition the
w(i) codewords into M2 = exp[m(H(S0|S2) + ε3)] bins and
enumerate these bins with index w2 ∈ [1,M2]. We call these
as the destination bins.

For the channel codebook, generate M2 codewords xn
1 (j)

for j ∈ [1,M2] i.i.d. with p(xn
1 (j)) = Πn

t=1p(x1) and index
them as xn

1 (j). For each xn
1 (j), generate M1 conditionally

independent codewords xn
0 (i|j), i ∈ [1,M1] with probability

p(xn
0 |xn

1 (j)) = Πn
t=1p(x0|x1(j)).

Encoding: Consider a source sequence SBm
0 of length

Bm. Partition this sequence into B portions, sm
0,b, b =

1, . . . , B. Similarly, partition the side information sequences
into B length-m blocks sBm

1 = [sm
1,1, . . . , s

m
1,B ] and sBm

2 =
[sm

2,1, . . . , s
m
2,B ]. We will transmit a total of Bm source samples

over a total of (B + 1)n channel uses, i.e., over B + 1 blocks
of n channel uses each. For any fixed (m, n) with n = bm, we
can achieve a rate arbitrarily close to b = n/m by increasing
B, i.e., (B + 1)n/Bm ≈ n/m = b.

In block 1, node T0 observes sm
0,1, finds a jointly typical

codeword w(1) and the corresponding relay bin index w1,1 ∈
[1,M1]. It transmits the channel codeword x0(w1,1, 1). The
relay simply transmits x1(1). Similarly, in block b for b =
2, . . . , B, the source terminal transmits the channel codeword
x0(w1,b, w2,b−1) where w1,b ∈ [1, M1] is the relay bin index of
codeword w(b) jointly typical with the source vector sm

0,b, and
w2,b−1 ∈ [1,M2] is the destination bin index of the codeword
w(b−1) jointly typical with the source vector sm

0,b−1. In block
B + 1, node T0 transmits x0(1, w2,B).

Now, assume that the relay knows sm
0,b−1 at the end of block

b−1. It finds the corresponding destination bin index ŵ2,b−1 ∈
[1,M2]. At block b, for b = 2, . . . , B + 1, it transmits the
channel codeword x1(ŵ2,b−1).

Decoding and Error Probability Analysis: The relay de-
codes the source signal sequentially trying to reconstruct
source block sm

0,b at the end of channel block b. Assume that
the relay knows sm

0,b−1 at the end of block b − 1 with high
probability. Hence, it can find the destination bin index w2,b−1.
Using this information and its received signal yn

1 , the relay
channel decoder will attempt to decode w1,b, i.e., the relay
bin index corresponding to sm

0,b. This is then given to the
relay source decoder. With the relay bin index and the side
information sm

1,b, the relay source decoder estimates sm
0,b. The

estimation error can be made smaller than ε for large enough
m, n satisfying n = bm since,

H(S0|S1) < bI(X0;Y1|X1).

Decoding at the destination will be done using backward
decoding. The destination node waits till the end of channel
block B + 1. It first tries to decode sm

0,B using the received
signal at channel block B + 1 and its side information sm

2,B .
Going backwards from the last channel block to the first, we
assume that the destination knows sm

0,b+1 at the end of channel
block b + 2 for b = B − 1, . . . , 0. Hence the destination also
knows the relay bin index w1,b+1 corresponding to s0,b+1.
Then at block b + 1, the destination channel decoder first
estimates the bin index ŵm

2,b corresponding to sm
0,b based

on its received signal yn
2 . This bin index is then provided

to the destination source decoder. The destination source
decoder estimates sm

0,b using ŵm
2,b and its side information sm

2,b.
Arbitrarily small error probability is achieved for the estimate
ŝm
0,b at the destination with large enough m,n and n = bm

since,
H(S0|S2) < bI(X0, X1; Y2).

2) Converse: Let P
(m,n)
e → 0 for a sequence of encoders

f
(m,n)
0 , f

(m,n)
1 and decoders g

(m,n)
1 , g

(m,n)
2 with n = bm.

We will use Fano’s inequality which states that

H(Sm
0 |Ŝm

i ) ≤ 1 + mPr{Sm
0 6= Ŝm

i } log(|S0|),
≤ 1 + mP (m,n)

e log(|S0|),
, mδ(P (m,n)

e ), (11)



where δ(x) is a nonnegative function that goes to zero as
x → 0. Then we can obtain the following chain of inequalities.

n∑

i=1

I(X0,i; Y1,i|X1,i) ≥
n∑

i=1

I(Sm
0 ; Y1,i|X1,i), (12)

=
n∑

i=1

I(Sm
0 , Sm

1 ; Y1,i|X1,i), (13)

≥
n∑

i=1

I(Sm
0 ;Y1,i|X1,i, S

m
1 ), (14)

=
n∑

i=1

I(Sm
0 , Y i−1

1 ; Y1,i|X1,i, S
m
1 )

− I(Y i−1
1 ; Y1,i|X1,i, S

m
0 , Sm

1 ), (15)

=
n∑

i=1

I(Sm
0 , Y i−1

1 ; Y1,i|X1,i, S
m
1 ), (16)

≥
n∑

i=1

I(Sm
0 ;Y1,i|Y i−1

1 , X1,i, S
m
1 ), (17)

=
n∑

i=1

I(Sm
0 ;Y1,i|Y i−1

1 , Sm
1 ), (18)

= I(Sm
0 ; Y n

1 |Sm
1 ), (19)

= H(Sm
0 |Sm

1 )−H(Sm
0 |Y n

1 , Sm
1 ),

≥ mH(S0|S1)−H(Sm
0 |Ŝm

1 ), (20)

≥ mH(S0|S1)−mδ(P (m,n)
e ), (21)

where (12) follows from data processing inequality and the
fact that Sm

0 −X0,i − Y1,i forms a Markov chain given X1;
(13) follows from the Markov chain Sm

1 − (Sm
0 , X1,i)− Y1,i;

(14) follows from the chain rule and nonnegativity of the
mutual information; (15) follows from the chain rule; (16)
follows from the memoryless channel assumption; (17) again
follows from the chain rule and nonnegativity of the mutual
information; (18) follows from the fact that X1,i is a function
of Y i−1

1 and Sm
1 ; (19) follows from the chain rule; (20) follows

from the i.i.d source assumption and the fact that Ŝm
1 is a

function of Y n
1 and Sm

1 ; and finally (21) follows from Fano’s
inequality.

We can also obtain the following chain of inequalities.

n∑

i=1

I(X0,i, X1,i; Y1,i) ≥
n∑

i=1

I(Sm
0 , Sm

1 ;Y2,i), (22)

=
n∑

i=1

I(Sm
0 , Sm

1 , Sm
2 ;Y2,i), (23)

≥
n∑

i=1

I(Sm
0 , Sm

1 ; Y2,i|Sm
2 ), (24)

=
n∑

i=1

I(Sm
0 , Sm

1 , Y i−1
2 ;Y2,i|Sm

2 )

− I(Y i−1
2 ;Y2,i|Sm

0 , Sm
1 , Sm

2 ), (25)

=
n∑

i=1

I(Sm
0 , Sm

1 , Y i−1
2 ;Y2,i|Sm

2 ), (26)

≥
n∑

i=1

I(Sm
0 , Sm

1 ; Y2,i|Y i−1
2 , Sm

2 ), (27)

= I(Sm
0 , Sm

1 ;Y n
2 |Sm

2 ), (28)
≥ I(Sm

0 ; Y n
2 |Sm

2 ), (29)
≥ H(Sm

0 |Sm
2 )−H(Sm

0 |Y n
2 , Sm

2 ), (30)

≥ mH(S0|S2)−H(Sm
0 |Ŝm

2 ), (31)

≥ mH(S0|S2)−mδ(P (m,n)
e ), (32)

where (22) follows from data processing inequality and the fact
that (Sm

0 , Sm
1 )−(X0,i, X1,i)−Y2,i forms a Markov chain; (23)

follows from the Markov chain Sm
2 − (Sm

0 , Sm
1 ) − Y2,i; (24)

follows from the chain rule and nonnegativity of the mutual
information; (25) follows from the chain rule; (26) follows
from the memoryless channel assumption; (27)-(29) again
follow from the chain rule and nonnegativity of the mutual
information; (31) follows from data processing inequality since
Ŝm

2 is a function of Y n
2 and Sm

2 ; (32) follows from Fano’s
inequality.

From (21), (32), we have

1
n

n∑

i=1

I(X0,i;Y1,i|X1,i) ≥ 1
b

(H(S0|S1)− ε) ,

1
n

n∑

i=1

I(X0,i, X1,i;Y1,i) ≥ 1
b

(H(S0|S2)− ε) ,

for any ε > 0 and large enough n. We conclude the proof
by letting P

(m,n)
e → 0, and using the concavity of mutual

information over the set of all joint distributions p(x0, x1).

B. Proof of Corollary 3.2

Broadcast channel is a special case of our RBC model when
the channel outputs y1 and y2 are independent of the channel
input x1. Then the necessary conditions directly follow as we
have

I(X0; Y1|X1) = I(X0;Y1), (33)
I(X0, X1;Y2) = I(X0;Y2). (34)

Sufficiency also follows by setting X1 = ∅ in the achievability
of Theorem 3.1. Note that the achievability of Theorem 3.1
uses superposition block Markov encoding at the source node
T0, and backward decoding at node T2, a strategy not typically
used for broadcast channels.

C. Proof of Theorem 3.3

Achievability is the same as in Theorem 3.1. For the
converse (similar to the proof of Theorem 3.1), we have the
following:



n∑

i=1

I(X0,i;Y1,i, Y2,i|X1,i)

≥
n∑

i=1

I(Sm
0 ; Y1,i, Y2,i|X1,i), (35)

=
n∑

i=1

I(Sm
0 , Sm

1 , Sm
2 ; Y1,i, Y2,i|X1,i), (36)

= I(Sm
0 ;Y n

1 , Y n
2 |Sm

1 , Sm
2 ), (37)

= H(Sm
0 |Sm

1 , Sm
2 )−H(Sm

0 |Y n
1 , Y n

2 , Sm
1 , Sm

2 ),
≥ H(Sm

0 |Sm
1 )−H(Sm

0 |Y n
2 , Sm

2 ), (38)

≥ mH(S0|S1)−H(Sm
0 |Ŝm

2 ), (39)

≥ mH(S0|S1)−mδ(P (m,n)
e ), (40)

where (35)-(37) are similar to (12)-(19); (38) follows from the
Markov chain Sm

0 − Sm
1 − Sm

2 and the fact that conditioning
reduces entropy; (39) follows from the i.i.d source assumption
and the fact that Ŝm

2 is a function of Y n
2 and Sm

2 ; and (40)
follows from Fano’s inequality.

Since we have a physically degraded relay channel, we have
n∑

i=1

I(X0,i; Y1,i, Y2,i|X1,i) =
n∑

i=1

I(X0,i;Y1,i|X1,i),

The second part of the proof is given by (22)-(32). Similar
to the proof of Theorem 3.1, using the concavity of mutual
information we complete the proof.

V. DISCUSSIONS

The proof of Theorem 3.1 in Section IV shows that, while
each source/channel encoder/decoder acts on its own within
each block, there is interaction among the channel and source
codes of multiple blocks through message transfer. Hence we
can use a concatenation of existing near-optimal source and
channel codes while maintaining the required source/channel
coder interaction. Note that, this is different than the opera-
tional separation technique proposed in [5], in which either
the decoding is done jointly or the channel decoder outputs a
list for the source decoder, which in turn finds the right source
message using this list and the side information.

We note that, despite its modular structure, our coding
scheme does not provide informational separation in Shannon
sense. In informational separation, the source and channel
coding is completely separated once the rate is picked. In our
scheme, however, the source and channel codes, when con-
sidered over B blocks, are not standalone. The relay channel
decoder uses the information provided by the relay source
decoder from the previous block, similarly the destination
channel decoder uses the output of destination source decoder
from the next block. Also, the relay uses the decoded source
codeword from the previous block to find its transmitted
channel codeword.

Our strategy relies on backward decoding which increases
the decoding delay at the destination. For relay channel coding,
sliding-window decoding scheme is known to achieve the same

performance as backward decoding with much smaller end-
to-end decoding delay. However, a closer examination of our
scenario reveals that a straightforward application of sliding-
window decoding at the destination would not work in this
joint source-channel coding scenario. The channel codes of
the source terminal at block b and the relay terminal at block
b + 1 do not correspond to the same message index, and thus
decoding them jointly at the destination would perform poorly.
A list decoding approach would help reduce the delay with an
increased decoding complexity.

Finally, for a general relay channel, a destination-relay chan-
nel feedback not only allows us to characterize the necessary
and sufficient conditions for lossless transmission in the case
of degraded side information, but also leads to the optimality
of operational separation.

VI. CONCLUSION

In this paper, we consider transmission of a discrete mem-
oryless source over cooperative relay broadcast and relay
channels where the relay and the destination terminals have
access to correlated side information. We prove the optimality
of operational separation for an arbitrary cooperative relay
broadcast channel, a physically degraded relay channel with
degraded side information and finally for an arbitrary relay
channel with perfect destination relay feedback and degraded
side information. For the achievability, we propose a novel
superposition block Markov encoding and backward decoding
scheme, which provides modularity in the system design.

Our results can be extended to more complicated relay
network scenarios, and can help us design optimal network
components to best utilize the available side information at
the relay and the destination terminals for joint source-channel
coding over cooperative relay (broadcast) network.
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