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Abstract—We study the uncoded transmission of a bivariate
Gaussian source over a two-user symmetric Gaussian broadcast
channel with a unit-delay noiseless feedback (GBCF), assuming
that each (uncoded) source sample is transmitted using a finite
number of channel uses, and that the transmission scheme is
linear. We consider three transmission schemes: The scheme
of Ardestanizadeh et al., which is based on linear quadratic
Gaussian (LQG) control theory, the scheme of Ozarow and Leung
(OL), and a novel scheme derived in this work designed using
a dynamic programing (DP) approach. For the LQG scheme
we characterize the minimal number of channel uses needed to
achieve a specified mean-square error (MSE). For the OL scheme
we present lower and upper bounds on the minimal number of
channel uses needed to achieve a specified MSE, which become
tight when the signal-to-noise ratio approaches zero. Finally, we
show that for any fixed and finite number of channel uses, the
proposed DP scheme achieves MSE lower than the MSE achieved
by either the LQG or the OL schemes.

I. INTRODUCTION

We study the transmission of a bivariate Gaussian source
over a two-user Gaussian broadcast channel (GBC) with
noiseless causal feedback (NCF), referred to as the GBCF. Mo-
tivated by applications with strict delay constraints, we focus
on linear uncoded transmission schemes, namely, schemes that
do not encode over sequences of source symbols. We further
assume that a finite number of channel symbols is used for the
transmission of each source symbol, and aim at characterizing
the minimal number of channel uses required to achieve a
target mean-square error (MSE).

The capacity region of the GBCF is not known; however,
by extending the Schalkwijk-Kailath (SK) scheme of [1] to
two-user GBCFs, the work [2] showed that NCF can enlarge
the capacity region of the GBC. In this work we refer to the
linear transmission scheme developed in [2] as the OL scheme.
This scheme was later extended to GBCFs with more than two
users and to Gaussian interference channels with NCF (GICFs)
in [3]. Recently, in [4], we extended the OL scheme by using
estimators with memory instead of the memoryless estimators
used in the original OL scheme of [2].

A different approach for channel coding over the GBCF
was developed based on control theory. Such a transmission
scheme for the two-user GBCF with independent noises was
presented in [5], where it was shown to achieve rate pairs
outside the achievable rate region of the OL scheme. The work
[6] used linear quadratic Gaussian (LQG) control to develop a
scheme without requiring the independent noises assumption
in [5], and also presented a linear transmission scheme for
GBCFs with more than two users. We refer to this scheme as
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the LQG scheme. Recently, [7] showed that for the two-user
GBCF with independent noises that have the same variance,
the LQG scheme achieves the maximal sum-rate among all
possible linear-feedback schemes.

GBCFs and GICFs were also studied in [8] which presented
a transmission scheme whose sum-rate approaches the full-
cooperation bound as the signal-to-noise ratio (SNR) increases
to infinity. Very recently, [9] showed that the capacity region
of the GBCF with independent noises and only a common
message cannot be achieved by linear feedback schemes.

While [2]–[9] studied channel coding for the GBCF, in
[10] we considered joint source-channel coding, i.e., the
transmission of correlated sources over the GBCF using a
finite number of channel uses for sending each source pair
sample. In particular, in [10] we applied both the OL and
LQG schemes to the transmission of a pair of correlated
Gaussian sources over the GBCF and derived bounds on the
number of channel uses needed to achieve a target MSE pair.
One of the contributions of the present work is improving
upon the bounds presented in [10]. Lastly, we note that [11]
studied the transmission of correlated Gaussian sources over
the two-user multiple-access channel (MAC) with NCF, and
established an upper bound on the energy-distortion tradeoff
for the symmetric scenario.

Main Contributions: We study the transmission of a bi-
variate Gaussian source over the symmetric GBCF with corre-
lated noises, focusing on linear and memoryless transmission
schemes. In such schemes the transmitted signal at any time
index is restricted to be a linear combination of the channel
outputs and the encoder state (parameters) at the previous
time index. First, we consider the LQG scheme and provide
an explicit and exact characterization of the minimal number
of channel uses required to achieve a target MSE at each
receiver (note that the bounds derived in [10] were not exact).
We then proceed to study the OL scheme and derive upper
and lower bounds on the minimal number of channel uses
required to achieve a target MSE at each receiver. These
bounds become tight as the SNR approaches zero, and improve
upon the bounds presented in [10]. Finally, we present a new
linear and memoryless transmission scheme designed using a
dynamic programing (DP) approach [12], to which we refer
as the DP scheme. For a finite number of channel uses, the
newly derived DP scheme is shown to achieve an MSE lower
than both OL and LQG. Yet, the analysis of this scheme is
highly complicated and finding the coefficients of this scheme
becomes computationally infeasible as the number of channel
uses becomes large.



Fig. 1: The two-user GBCF with correlated sources (S1, S2). Ŝ1 and Ŝ2 are
the reconstructions of S1 and S2, respectively, after K transmissions.

The rest of this paper is organized as follows: The problem
formulation is introduced in Section II. The LQG and OL
schemes are studied in Sections III and IV, respectively. The
DP scheme is derived in Section V, and discussion along with
a numerical example are given in Section VI.

Notations: We use capital letters to denote random vari-
ables, e.g., X , boldface letters to denote column vectors, e.g.,
X, and sans-serif font to denote matrices, e.g., M. We use
E {·}, (·)T , log(·) and R to denote expectation, transpose, nat-
ural basis logarithm, and the set of real numbers, respectively.
Lastly, we let sgn(x) denote the sign of x, where sgn(0) , 1,
and denote the ceiling function of x by dxe.

II. PROBLEM FORMULATION

The two-user GBCF is depicted in Fig. 1. All the signals are
real. The encoder observes a realization of a bivariate Gaussian
source denoted by S = [S1, S2]T , and is required to send
Si, i = 1, 2, to the i’th receiver, denoted by Rxi. Let Si ∼
N (0, σ2

s), E {S1S2}=ρsσ
2
s , |ρs|<1, and Qs,E{SST }. Each

bivariate source symbol is transmitted using K channel uses.
The channel outputs at each receiver at time k, k=1, 2, . . . ,K,
are given by Yi,k = Xk + Zi,k, i = 1, 2, where [Z1,k, Z2,k]T

are jointly Gaussian i.i.d over time k, independent of S,
and E{Z2

i } = σ2
z ,E{Z1,kZ2,k} = ρzσ

2
z , |ρz| < 1. Letting

B , [1, 1]T ,Yk , [Y1,k, Y2,k]T , and Zk , [Z1,k, Z2,k]T , the
received signal can be written as:

Yk = BXk + Zk, k = 1, 2, . . . ,K. (1)
Rxi, i=1, 2, uses its K channel outputs, YK

i,1, to estimate Si:
Ŝi=φi(Y

K
i,1), φi :RK→R. The encoder maps the observed

source and the received NCF into a channel input at time k via
Xk=fk(S1, S2,Y

k−1
1,1 ,Yk−1

2,1 ), fk :R2k→R. The transmitted
signal is subject to a per-symbol average power constraint
defined as:

E
{
X2
k

}
≤ P, ∀k = 1, 2, . . . ,K. (2)

For a specific set of parameters (P, σ2
z , ρz, σ

2
s , ρs), we define

a (D,K) code, 0<D≤σ2
s , to be a collection of K encoding

functions, each satisfying (2), and two decoding functions such
that:

E{(Si − Ŝi,K)2} ≤ D, i = 1, 2. (3)
Our objective is to identify, for a given D, the minimal number
of channel uses K for which a (D,K) code exists.

In the sequel, we let KSCHEME denote the minimal number
of channel uses required to achieve a target MSE D using the
scheme “SCHEME”. Next, we consider transmission based
on the LQG and OL schemes, specialized to the symmetric
setting.

III. TRANSMISSION BASED ON THE LQG SCHEME

A. A Brief Overview of the LQG Scheme
We use the LQG scheme of [6], after adaptation to the

transmission of Gaussian sources as described in [10]. Con-
sider a two-dimensional unstable dynamical system which is
stabilized by a controller observing the entire system state
vector at time k, Uk = [U1,k, U2,k]T . The controller outputs
a scalar signal Xk, which is corrupted by additive Gaussian
noises. The dynamics of the system is given by:

U1 = S, Uk = AUk−1 + Yk−1, k = 2, 3, . . . ,K, (4)
where Yk is given in (1). For the symmetric setting we let
A=diag(a,−a), a∈R, |a|>1.
Encoding: In the corresponding communications problem, the
encoder consists of the system given in (4) and of the con-
troller. At each time index, the encoder recursively computes
Uk and transmits Xk. In this work we use the linear controller
presented in [6, Lemma 4], which is given by Xk=−CTUk,
where C = [c,−c]T is such that all the eigenvalues of the
matrix M , A−BCT have magnitudes smaller than 1. The
coefficients a and c are determined as in [6, Lemma 4].
Decoding: We use the decoder of [10, Thm. 1], which first
estimates Ui,k via Ûi,1 =0, Ûi,k=(−1)i−1 ·a·Ûi,k−1+Yi,k−1,
k = 2, 3, . . . ,K, and then applies minimum MSE (MMSE)
estimation of Si from Ûi,k+1 via [10, Eq. (8)]. The LQG
scheme is terminated after K channel uses, where K is chosen
such that the target MSE D is achieved at each receiver.

B. Finite Horizon Analysis of the LQG Scheme
Let Pk denote the instantaneous average transmission

power. Note that in the LQG scheme Pk changes over time
and converges to P as k →∞. In fact, in the LQG scheme Pk
may be larger than P and (2) may not be satisfied. Therefore,
given P, σ2

z and ρz , some sources must be scaled before
transmission in order for the constraint (2) to be satisfied. Let

[λ,−λ]T be the eigenvalues of M, and V ,

[
v1 v2

v2 v1

]
be a

matrix whose columns are the corresponding eigenvectors of
M. Furthermore, define µ1 =2c2σ2

s(1−ρs), µ2 =2c2σ2
s(1+ρs)a

4,
and µ3 =

2c2σ2
z((1−ρz)λ2+(1+ρz)a4)

1−λ4 . The following proposition
characterizes the sources which satisfy (2):

Proposition 1. The LQG scheme satisfies the per-symbol
average power constraint (2) iff µ1≤P and µ2≤µ3.
Proof outline: We show that Pk=P+ (µ1−P )λ2(k−1), for

odd k’s, and that Pk=P+(µ2−µ3)λ2(k−1), for even k’s. Since
λ<1, it follows that (2) is satisfied iff µ1 ≤P and µ2≤µ3.
The detailed proof can be found in [13].

Next, we explicitly characterize KLQG. First, we define the

function Φ(ς, ρ) ,
ς2

(
(v21+v22−2ρv1v2)

2
+4(1−ρ2)v21v

2
2

)
det2(V)

. We also

define the terms: Ψ0 , σ2
z+λ2Φ(σz,ρz)

1−λ4 , Ψ1 , Φ(σz,ρz)+σ2
zλ

2

1−λ4 ,

Γs =
σ2
s(v21+v22−2ρsv1v2)

v21−v22
, Υ0 = Ψ0 · (D − σ2

s) −Dσ2
s , Υ1 =

Ψ0 · (σ2
s −D) + 2Dσ2

s , Υ2 = (Φ(σs, ρs)−Ψ1)(σ2
s −D)−Γ2

s,
and Υ3 = Ψ0 · (σ2

s −D) + 2DΓs. Finally, let n be a positive
integer and define the functions f (e)(n),2

⌈
n
2

⌉
, and f (o)(n),

2
⌈
n−1

2

⌉
+ 1. The following theorem characterizes KLQG:



Bρ(P ) ,
(8+ψ1)P 3 +24σ2

zP
2 +12σ4

zψ1P +4σ6
z

(
4σ2

zψ1 +8
)

8σ10
z

P 2, Bα(P ) ,
P + 2σ2

z

2σ6
z

P 2

Theorem 1. Let (x(e)
1 , x

(e)
2 ) and (x(o)

1 , x
(o)
2 ) denote the roots of

the polynomials P (e)(x) , Υ0x
2 +Υ1x−Dσ2

s , and P (o)(x) ,
Υ2x

2 + Υ3x−Dσ2
s , respectively. Furthermore, define:

x(e)
0 ,

{
min{x(e)

1 , x
(e)
2 },

−Υ2
1

4Dσ2
s
≤ Υ0

a−4, otherwise.

x(o)
0 ,


min{x(o)

1 , x
(o)
2 },

−Υ2
3

4Dσ2
s
≤ Υ2 ≤ 0,

a−2, Υ2 <
−Υ2

3

4Dσ2
s
,

max{x(o)
1 , x

(o)
2 }, otherwise.

Then, KLQG is given by:

KLQG=min

{
f (e)

(⌈
− log x(e)

0

2 log |a|

⌉)
,f (o)

(⌈
− log x(o)

0

2 log |a|

⌉)}
. (5)

Proof outline: Recall that the scheme is terminated when
D≥E{(Si−Ŝi,k)2}. We show that for odd k’s this condition
can be formulated as P (o)(x) ≤ 0, where x = a−2k. Similar
observation holds for even k’s with P (e)(x)≤0. Then, if Υ2≥
−Υ2

3

4Dσ2
s

, we choose x(o)
0 among the possible two real roots of

P (o)(x), based on the concavity of P (o)(x). Otherwise we set
x(o)

0 =a−2 which results in KLQG =1. Similarly we find x(e)
0 ,

while noting that Υ0 ≤ 0. Finally, x(o)
0 and x(e)

0 are translated
to KLQG as in (5). The detailed proof can be found in [13].

IV. TRANSMISSION BASED ON THE OL SCHEME

A. A Brief Overview of the OL Scheme
We use the OL scheme of [2], adapted to the transmission

of Gaussian sources as described in [10]. In the OL scheme,
each receiver recursively estimates its intended source. The
transmitter, using the NCF, tracks the estimation errors at the
receivers and sends a linear combination of these errors. The
scheme is terminated after K channel uses, where K is chosen
such that the target MSE D is achieved at each receiver.
Setup: Let Ŝi,k be the estimate of Si at Rxi after receiving the
k’th channel output Yi,k. Let εi,k, Ŝi,k−Si be the estimation
error after k transmissions, and define ε̂i,k−1 , Ŝi,k−1−Ŝi,k.
Hence, we have εi,k = εi,k−1− ε̂i,k−1. Further define αi,k ,
E{ε2i,k} to be the MSE at Rxi after k transmissions. Note that
as we consider the symmetric setting, then α1,k = α2,k ,
αk. Finally, define ρk , E{ε1,kε2,k}

αk
which is the correlation

between the estimation errors.
Encoding: Set Ŝi,0=0 and εi,0=Si, thus, ρ0=ρs. Furthermore,
let Ψk,

√
P

2(1+|ρk|) . At the k’th channel use, 1≤k≤K, the

transmitter sends Xk = Ψk−1√
αk

(ε1,k−1 +ε2,k−1sgn(ρk−1)), and
the corresponding channel outputs are given by (1).
Decoding: Each receiver computes ε̂i,k−1, i = 1, 2, based only
on Yi,k: ε̂i,k−1 =

E{εi,k−1Yi,k}
E{Y 2

i,k}
Yi,k, see [2, pg. 669] for the

explicit expressions. Let π0,P+σ2
z , Σ , P +σ2

z(2−ρz) and
ν = σ4

z(1−ρz)2. Then, the instantaneous MSE αk is given by
the recursive expression [2, Eq. (5)]:

αk = αk−1

σ2
z + Ψ2

k−1(1− ρ2
k−1)

π0
, (6)

where the recursive expression for ρk is given by [2, Eqn. (7)]:

ρk=
(ρzσ

2
zΣ+ν)ρk−1−Ψ2

k−1Σ(1−ρ2
k−1)sgn(ρk−1)

π0(σ2
z+Ψ2

k−1(1−ρ2
k−1))

. (7)

Remark 1. In the above OL scheme we do not apply the
initialization procedure described in [2, pg. 669]. Instead, we
set εi,0 = Si and ρ0 = ρs, thus, taking advantage of the
correlation among the sources.

B. Finite Horizon Analysis of the OL Scheme
The instantaneous MSE in (6), αk, depends on ρk, thus, an

explicit characterization of KOL requires explicitly character-
izing ρk. However, this is highly complicated as ρk is defined
recursively in (7). In the following, we obtain upper and lower
bounds on KOL, such that the ratios between the values of
the bounds and KOL approach 1 when the SNR approach 0,
i.e., P

σ2
z
→0. In this regime these bounds improve upon those

derived in [10, Thm. 4].
We follow the approach of [11, Thm. 7] and approximate the

temporal behavior of ρk and αk based on (6) and (7), at low
P
σ2
z

. We first define the following terms: ψ1,2|ρz|+5(1−ρz),

ψ2,
min{2−ρz,2(1−ρz)}

2σ2
z

and ψ3, max
{

1−ρz
(2−ρz)2 ,

1+ρz
4(1−ρz)2

}
. We

further define, at the top of the page, Bρ(P ) and Bα(P )
which constitute upper bounds on the approximation errors
of ρk+1−ρk and αk+1

αk
, respectively. Lastly, define K̄0(P ),

ρs
Pψ2(ρz)−Bρ(P ) , ρ̄(P ) , P (3−ρz)2

8σ2
z

+Bρ(P ), and the terms
Fj(P ), j=1, 2, . . . , 9:

F1(P ),K̄0(P )ψ3 ·
(

(3−ρz)2P

8σ2
z

+Bρ(P )

)2

,

F2(P ),K̄0(P )
Bρ(P )

2ψ2σ2
z

,

F3(P ),K̄0(P )
1

(1−ρz)2

(
(3−ρz)2P

8σ2
z

+Bρ(P )

)2

,

F4(P ),
K̄0(P )Bρ(P )

1− ρz
, F5(P ),K̄0(P )Bα(P ),

F6(P ),
5∑
i=3

Fi(P ),

F7(P ),
P

2σ2
z

(
−1 +

(
ρ̄(P ) +

2σ2
z

P
Bα(P )

))
,

F8(P ),
P

2σ2
z

(
−1−

(
ρ̄(P ) +

2σ2
z

P
Bα(P )

))
,

F9(P ),
2σ2

z

P
(F1(P ) + F2(P )) .

Let ρlb
∗ (D),2−ρz+

σ2
s

D (ρz+ρs−2) eF6(P ) and ρub
∗ (D),2−

ρz+
σ2
s

D (ρz+ρs−2) e−F6(P ). The following theorem provides
upper and lower bounds on KOL:

Theorem 2. Let P satisfy the conditions: ρ̄(P )+
2σ2
z

P Bα(P )<1

and Bρ(P )<Pψ2. Further let Dub
0 , σ2

s(2−ρz−ρs)eF6(P )

2−ρz and



Dlb
0 ,

σ2
s(2−ρz−ρs)e−F6(P )

2−ρz . Then, it follows that K lb
OL ≤ KOL ≤

Kub
OL, where, for D ≥ Dub

0 :

Kub
OL=

2σ2
z

P (3−ρz)
log

(
(2−ρz−ρlb

∗ (D))(1+ρs)

(2−ρz−ρs)(1+ρlb
∗ (D))

)
+F9(P), (8a)

K lb
OL=

2σ2
z

P (3−ρz)
log

(
(2−ρz−ρub

∗ (D))(1+ρs)

(2−ρz−ρs)(1+ρub
∗ (D))

)
−F9(P), (8b)

and for D < Dlb
0 :

Kub
OL=

(
log

(
D(2−ρz−ρ̄(P, ρz))

σ2
s(2−ρz−ρs)

)
−F6(P )

)
1

F7(P )

+
2σ2

z

P (3−ρz)
log

(
(2−ρz−ρlb

∗ (Dub
0 ))(1+ρs)

(2−ρz−ρs)(1+ρlb
∗ (Dub

0 ))

)
+F9(P), (8c)

K lb
OL=

(
log

(
D(2−ρz+ρ̄(P, ρz))

σ2
s(2−ρz−ρs)

)
+F6(P )

)
1

F8(P )

+
2σ2

z

P (3−ρz)
log

(
(2−ρz−ρub

∗ (Dlb
0 ))(1+ρs)

(2−ρz−ρs)(1+ρub
∗ (Dlb

0 ))

)
−F9(P). (8d)

Proof: The proof can be found in [13].
Remark 2. Let ρs≥0 (otherwise replace S1 with −S1). From
[2, pg. 669] it follows that if ρk > 0 then ρk+1 < ρk. This
implies that ρk decreases (with k) until it crosses zero. Let
K0,min{k :ρk+1<0} be the largest time index k for which
ρk ≥ 0. In the proof of Thm. 2 we show that, for sufficiently
small P

σ2
z

, |ρk|≤ρ̄(P ),∀k≥K0. Hence, ρk decreases until time
K0 and then has a bounded magnitude. This implies that the
behavior of αk is different in the regimes k≤K0 and k>K0.
Let D0 be the MSE after K0 channel uses; then Dub

0 and Dlb
0

constitute upper and lower bounds on D0, respectively. This
leads to the two cases in Thm. 2: (8a)–(8b) correspond to the
case of KOL < K0, while (8c)–(8d) correspond to the case
K0 <KOL. Lastly we note that K̄0(P ) constitutes an upper
bound on K0.

Next, we demonstrate these results via a numerical example.
C. A Numerical Example

Let Kub,[10]
OL and K lb,[10]

OL denote the upper and lower bounds
on KOL presented in [10, Thm. 4]. We consider a GBCF
with σ2

s = 1, ρs = 0.9, σ2
z = 1, ρz = 0.7, D = 0.1, and

two possible values of P : P1 = 10−4 and P2 = 10−6. Both
P1 and P2 satisfy the conditions of Thm. 2. Table I details
KOL,K

ub,[10]
OL ,K lb,[10]

OL ,Kub
OL and K lb

OL for P1 and P2:
P KOL Kub,[10]

OL K lb,[10]
OL Kub

OL K lb
OL

10−4 38311 46058 23026 38659 37960
10−6 3830913 4605176 2302586 3831260 3830563

TABLE I: Values of KOL and the proposed bounds.

Note that Kub
OL −KOL is approximately the same for both

P1 and P2, while KOL increases by approximately 102. This
holds for KOL−K lb

OL as well. Combined with the fact that
Bρ(P ), Bα(P )→0 when P→0, this implies that Kub

OL/KOL
approaches 1 when the SNR approaches 0. Table I also
indicates that the ratio Kub,[10]

OL /KOL ≈ 1.2 for both P1 and
P2, yet, these bounds hold for any SNR.

The LQG and OL schemes described above are linear
and memoryless. Next, we use DP to design a linear and
memoryless transmission scheme, which outperforms OL and
LQG, under the per-symbol average power constraint (2).

V. TRANSMISSION VIA THE DP SCHEME

A. Problem Formulation - Revisited
We examine a problem complimentary to the one formulated

in Section II: The number of channel uses is fixed to K, and we
denote the MSE after K channel uses by DK . Our objective
is to find a linear and memoryless transmission scheme which
achieves the minimal MSE DK,min at each receiver. Let εi,k−1

denote the information sent to Rxi at time k. As we focus
on linear and memoryless transmission schemes, εi,k is of
the form:

εi,k = βi,k (εi,k−1 − bi,kYi,k) , βi,k, bi,k ∈ R. (9)
Following [3], we let mk∈{1,−1} be a modulation coefficient.
As we consider the symmetric setting, then |β1,k| = |β2,k|,
|b1,k|=|b2,k| and we let b1,k=bk. This leads to the following
structure of Xk+1:
Xk+1=dk

(
(ε1,k−1−bkY1,k)+mk(ε2,k−1−mk−1bkY2,k)

)
, (10)

where dk is chosen to minimize DK under the constraint
Pk ≤ P . In [13] we show that choosing Pk = P is optimal.
Next, we let αk , E{ε2i,k}, i = 1, 2, be the MSE after k
channel uses, and rk , E{ε1,kε2,k}. Thus, dk is given by
dk =

√
P

2(αk+mkrk) . Finally, we initialize the transmission
scheme via εi,0=Si, α0=σ2

s , and r0=ρsσ
2
s .

Our objective is to minimize DK , over all possible vec-
tors of estimation coefficients b = [b1, b2, . . . , bK ] ∈ RK ,
and all possible vectors of modulation coefficients m =
[m0,m1, . . . ,mK−1] ∈ {1,−1}K . As the joint minimization
of DK over b and m is complicated, we define αK,min(m)
to be the minimal achievable MSE after K channel uses for
a given modulation vector m. We first calculate αK,min(m),
thereby arriving at the optimization problem:

DK,min = min
m∈{1,−1}K

αK,min(m), (11)

which can be solved by searching over all possible 2K modula-
tion vectors. We refer to the transmission scheme which uses
the optimal b and m as the DP scheme. Next, we present
the algorithm for finding the minimizing b and the minimal
αK,min(m) for a given m.
B. Calculating the Minimizing b and αK,min(m)

Let m be a given modulation vector. Then, (1), (9), and
(10) imply that αk and rk are given by:
αk=αk−1+b2k · (P+σ2

z)−bk
√

2P (αk−1+mk−1rk−1) (12a)

rk=rk−1+b2kmk−1 · (P+ρzσ
2
z)

− bkmk−1

√
2P (αk−1+mk−1rk−1). (12b)

Therefore, (αk−1, rk−1) can be treated as a state variable,
which, given bk and m, evolves deterministically. Thus, find-
ing αK,min(m) can be cast as a DP with state (αk−1, rk−1),
actions bk, and cost function αK . Note that with this formula-
tion bk is a function of only (αk−1, rk−1), and the last action
bK is the MMSE estimation coefficient for estimating ε1,K−1

from Y1,K . Finally, the DP solution [12, Ch. 4] implies that
αk can be written as αk=ηk−1αk−1+θk−1mk−1rk−1, where
the sequences ηk and θk, k = 1, 2, . . . ,K − 1, are obtained
using backwards recursion (in time). The minimizing b and
the sequences ηk and θk are given in the following theorem:



Theorem 3. For a fixed m, the sequences ηk and θk, k =
1, 2, . . . ,K − 1, are defined through the backwards recursion
(in time):

ηk−1=ηk− τ(ηk, θk,mk,mk−1) (13a)
θk−1=θkmkmk−1− τ(ηk, θk,mk,mk−1), (13b)

where τ(ηk, θk,mk,mk−1) = P (ηk+θkmkmk−1)2

2(ηk(P+σ2
z)+θkmkmk−1(P+ρzσ2

z)) ,

ηK−1 =
(

1− P
2(P+σ2

z)

)
, and θK−1 = − P

2(P+σ2
z) . Further-

more, for k=1, 2, . . . ,K − 1 the coefficients bk are given by

bk =
√

P (αk−1+mk−1rk−1)
2

ηk+θkmkmk−1

ηk(P+σ2
z)+θkmkmk−1(P+ρzσ2

z) , and

bK=
√

P (αK−1+mK−1rK−1)
2(P+σ2

z)2 . The corresponding MSE at time
K is the minimal MSE given m.

Proof: The proof can be found in [13].
Thm. 3 can be used for calculating the optimal b for a given
m. The procedure is summarized in Alg. 1:

Algorithm 1 Calculating the Minimizing a and αK,min(m)

1: ηK−1 ←
(
1− P

2(P+σ2
z)

)
, θK−1 ← − P

2(P+σ2
z)

2: Calculate the backwards recursions (13)
3: α0 ← σ2

s , r0 ← ρs
4: for k = 1, 2, . . . ,K do
5: Calculate bk as in Thm. 3
6: Calculate αk, rk via (12)
7: end for

VI. A DISCUSSION AND A NUMERICAL EXAMPLE

Remark 3. As we aim at minimizing αK,min(m), bK is
the MMSE estimation coefficient for estimating ε1,K−1 from
Y1,K , given m. On the other hand, for k < K, using the
MMSE estimation coefficient is not necessarily optimal as the
bk’s affect the future time indices. With this observation, it is
clear why the OL scheme, which applies the MMSE estimator
for all k’s, is not optimal in the MMSE sense, even among
the memoryless linear transmission schemes.

Remark 4. In [13] we show that choosing Pk = P in the
DP scheme is optimal. Thus, the DP scheme is the optimal
scheme (in the sense of minimal DK) among the class of
schemes which can be formulated via (9)–(10), subject to the
constraint Pk ≤ P . From [6, Eqs. (36)–(37)] it follows that
the LQG scheme can also be formulated via (9)–(10). Hence,
we conclude that DP achieves MSE which is at least as low
as any LQG scheme which satisfies the per-symbol average
power constraint (2), see Prop. 1.

Remark 5. Note that any choice of m will result in an upper
bound on DK,min. While finding DK,min involves searching
over all 2K possible m sequences, the actual search can be
shortened at the expense of a possibly larger MSE. Motivated
by the alternating sign of ρk in the OL and LQG schemes,
for k →∞, (see [6, Eqs. (23), (36)–(37)]), we can choose
m to start alternating signs after some L�K channel uses,
and essentially search only over 2L sequences. Numerical
simulations show that this approach can perform well, as
indicated in Fig. 2.

Lastly, we demonstrate our results via a numerical example.
Consider the transmission of a bivariate Gaussian source with
σ2
s = 1 and ρs = 0.2, over a symmetric GBCF with σ2

z =

Fig. 2: MSE vs. number of channel uses for σ2
s = 1, ρs = 0.2, ρz = 0, σ2

z =
1.3 and P = 1. mk is forced to an alternating sequence starting from L = 25.

1.3, ρz=0, and P =1. For this setting the conditions of Prop.
1 are satisfied. Fig. 2 depicts the MSEs (6), [10, Eq. (9)],
and (11), for this scenario, where the left figure depicts the
MSEs for 5≤k≤30 and the right figure depicts the MSEs for
705≤ k≤ 730. It can be observed that DP outperforms both
OL and LQG: For 5≤K≤30 OL is very close to DP, while
LQG obtains MSEs higher by factor of 10. For 705≤K≤730
LQG slightly outperforms OL and both perform worse than
DP by a factor of 10. This indicates that the slope of the line
corresponding to DP is the same as the slope of LQG, and
both are smaller (and negative) than the slope of OL. This
supports the asymptotic results of [6, Sec. V.A].
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