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Capacity Region of a One-Bit Quantized Gaussian
Multiple Access Channel
Borzoo Rassouli, Morteza Varasteh and Deniz Gündüz

Abstract—The capacity region of a two-transmitter Gaussian
multiple access channel (MAC) under average input power
constraints is studied, when the receiver employs a zero-threshold
one-bit analog-to-digital converter (ADC). It is proved that the
input distributions that achieve the boundary points of the
capacity region are discrete. Based on the position of a boundary
point, upper bounds on the number of the mass points of the
corresponding distributions are derived. Finally, a conjecture on
the sufficiency of K mass points in a point-to-point real AWGN
with a K-bin ADC front end (symmetric or asymmetric) is
settled.1

I. INTRODUCTION

The energy consumption of an analog-to-digital converter

(ADC) (measured in Joules/sample) grows exponentially with

its resolution (in bits/sample) [1], [2]. When the available

power is limited, for example, for mobile devices with limited

battery capacity, or for wireless receivers that operate on

limited energy harvested from ambient sources [3], the receiver

circuitry may be constrained to operate with low-resolution

ADCs. The presence of a low-resolution ADC, in particular a

one-bit ADC at the receiver, alters the channel characteristics

significantly. Such a constraint not only limits the fundamental

bounds on the achievable rate, but it also changes the nature

of the communication and modulation schemes approaching

these bounds. For example, in a real additive white Gaussian

noise (AWGN) channel under an average power constraint on

the input, it is shown in [4] that, if the receiver is equipped

with a K-bin (i.e., log2 K-bit) ADC front end, the capacity-

achieving input distribution is discrete with at most K + 1
mass points. We further tighten this to K mass points in this

paper. This is in contrast with the optimality of the Gaussian

input distribution when the receiver has infinite resolution.

Especially with the adoption of massive multiple-input

multiple-output (MIMO) receivers and the millimeter wave

technology enabling communication over large bandwidths,

communication systems with limited-resolution receiver front

ends are becoming of practical importance. Accordingly, there

have been a growing research interest in understanding both

the fundamental information-theoretic limits and the design

of practical communication protocols for systems with finite-

resolution ADC front ends [5]-[7]. In [5], the authors show
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that for a Rayleigh fading channel with a one-bit ADC front

end and perfect channel state information at the receiver

(CSIR), quadrature phase shift keying (QPSK) modulation

is capacity-achieving. For the point-to-point multiple-input

multiple-output (MIMO) channel with a one-bit ADC front

end at each receive antenna and perfect CSIR, [7] shows that

QPSK is optimal at very low SNRs, while with perfect channel

state information at the transmitter (CSIT), upper and lower

bounds on the capacity are provided in [6].

To the best of our knowledge, the existing literature on com-

munications with low-resolution ADCs focus exclusively on

point-to-point systems. Our goal in this paper is to understand

the impact of low-resolution ADCs on the capacity region of

a multiple access channel (MAC). In particular, we consider

a two-transmitter Gaussian MAC with a one-bit quantizer at

the receiver. The inputs to the channel are subject to average

power constraints. We show that any point on the boundary of

the capacity region is achieved by discrete input distributions.

Based on the slope of the tangent line to the capacity region

at a boundary point, upper bounds on the cardinality of the

support of these distributions are derived. Finally, in the proof

of Theorem 1, a simple optimization trick is used that also

settles a conjecture in the real AWGN channel with a K-bin

ADC front end (symmetric or asymmetric).

Notations. Random variables are denoted by capital let-

ters, while their realizations with lower case letters. FX(x)
denotes the cumulative distribution function (CDF) of random

variable X . The conditional probability mass function (pmf)

pY |X1,X2
(y|x1, x2) will be written as p(y|x1, x2). For integers

m ≤ n, we denote the set {m,m+ 1, . . . , n} by [m : n].
Remark 1. Some of the proofs, omitted here, can be found

in the longer version of the paper available online [8].

II. SYSTEM MODEL AND PRELIMINARIES

We consider a two-transmitter memoryless Gaussian MAC

(as shown in Figure 1) with a one-bit quantizer Γ at the

receiver front end. Transmitter j, j = 1, 2, encodes its message

Wj into a codeword Xn
j , and transmits it over the shared

channel. The signal received by the decoder is given by

Yi = Γ(X1,i +X2,i + Zi), i ∈ [1 : n],

where {Zi}ni=1 is an independent and identically distributed

(i.i.d.) Gaussian noise process, also independent of the channel

inputs Xn
1 and Xn

2 with Zi ∼ N (0, 1), i ∈ [1 : n]. Γ represents

the one-bit ADC operation given by

Γ(x) =

{
1 x ≥ 0
0 x < 0

.

This channel can be modelled by the triplet
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Fig. 1: A two-transmitter Gaussian MAC with a one-bit ADC

at the receiver.

(X1 ×X2, p(y|x1, x2),Y), where X1,X2 (= R) and Y
(= {0, 1}), respectively, are the alphabets of the inputs

and the output. The conditional pmf of the channel output

Y conditioned on the channel inputs X1 and X2 (i.e.

p(y|x1, x2)) is characterized by

p(0|x1, x2) = 1− p(1|x1, x2) = Q(x1 + x2), (1)

where Q(x) � 1√
2π

∫ +∞
x

e−
t2

2 dt.
Upon receiving the sequence Y n, the decoder finds the

estimates (Ŵ1, Ŵ2) of the messages.

A (2nR1 , 2nR2 , n) code for this channel consists of (as in

[9])

• two message sets [1 : 2nR1 ] and [1 : 2nR2 ],
• two encoders, where encoder j = 1, 2 assigns a codeword

xn
j (wj) to each message wj ∈ [1 : 2nRj ], and

• a decoder that assigns estimates (ŵ1, ŵ2) ∈ [1 : 2nR1 ]×
[1 : 2nR2 ] or an error message to each received sequence

yn.

We assume that the message pair (W1,W2) is uniformly

distributed over [1 : 2nR1 ]×[1 : 2nR2 ]. The average probability

of error is defined as

P (n)
e = Pr

{
(Ŵ1, Ŵ2) �= (W1,W2)

}
.

Average power constraints are imposed on the channel inputs

as

1

n

n∑
i=1

x2
j,i(wj) ≤ Pj , ∀mj ∈ [1 : 2nRj ], j ∈ [1 : 2],

where xj,i(wj) denotes the ith element of the codeword

xn
j (wj).
A rate pair (R1, R2) is said to be achievable for this channel

if there exists a sequence of (2nR1 , 2nR2 , n) codes (satisfying

the average power constraints) such that limn→∞ P
(n)
e = 0.

The capacity region C (P1, P2) of this channel is the closure

of the set of achievable rate pairs (R1, R2).

III. MAIN RESULTS

Proposition 1. The capacity region C (P1, P2) of a two-

transmitter memoryless MAC with average power constraints

P1 and P2 is the set of non-negative rate pairs (R1, R2) that

satisfy

R1 ≤ I(X1;Y |X2, U),

R2 ≤ I(X2;Y |X1, U),

R1 +R2 ≤ I(X1, X2;Y |U), (2)

for some FU (u)FX1|U (x1|u)FX2|U (x2|u), such that E[X2
j ] ≤

Pj , j = 1, 2. Also, it is sufficient to consider |U| ≤ 5.

Proof. The capacity region of the discrete memoryless (DM)

MAC with input cost constraints has been addressed in Exer-

cise 4.8 of [9]. If the input alphabets are not discrete, the

capacity region is still the same because: 1) the converse

remains the same if the inputs are from a continuous alphabet;

2) the region is achievable by coded time sharing and the

discretization procedure (see Remark 3.8 in [9]). Therefore,

it is sufficient to show the cardinality bound |U| ≤ 5. This

can be proved by using Carathéodory’s Theorem [10] and

taking into account the connectedness of the set of all product

distributions on R
2 [8].

Lemma 1. For the boundary points of C (P1, P2) that are

not sum-rate optimal, it is sufficient to have |U| ≤ 4.

Proof. The proof follows similarly to the proof of Proposition

1, and is provided in [8].

When there is no input cost constraint, the capacity region

of a MAC can be characterized either through the convex hull

operation as in [9, Theorem 4.2], or with the introduction

of an auxiliary random variable as in [9, Theorem 4.3].

The following remark states that when there is an input

cost constraint, the capacity region has only the computable

characterization with the auxiliary random variable.

Remark 2. Let (X1, X2) ∼ FX1(x1)FX2(x2) such that

E[X2
j ] ≤ Pj , j = 1, 2. Let R(P1, P2) denote the set of non-

negative rate pairs (R1, R2) such that

R1 ≤ I(X1;Y |X2),

R2 ≤ I(X2;Y |X1),

R1 +R2 ≤ I(X1, X2;Y ).

Let R1(P1, P2) be the convex closure of
⋃

FX1
FX2

R(P1, P2),
where the union is over all product distributions that satisfy

the average power constraints.

Let R2(P1, P2) be the set of non-negative rate pairs

(R1, R2) such that

R1 ≤ I(X1;Y |X2, U),

R2 ≤ I(X2;Y |X1, U),

R1 +R2 ≤ I(X1, X2;Y |U)
for some FU (u)FX1|U (x1|u)FX2|U (x2|u) that satisfies

E[X2
j |u] ≤ Pj , j = 1, 2, ∀u.

It can be verified that R1(P1, P2) = R2(P1, P2). By

comparing R2(P1, P2) to the capacity region C (P1, P2), we

can conclude that R2(P1, P2) ⊆ C (P1, P2). This follows from

the fact that in the region R2(P1, P2), the average power

constraint E[X2
j |u] ≤ Pj holds for every realization of the

auxiliary random variable U , which is a stronger condition

than E[X2
j ] ≤ Pj used in the capacity region. In [8], we show

through an example that R1(P1, P2) and R2(P1, P2) can be

strictly smaller than C (P1, P2). Therefore, in the presence of

input cost constraints, there are cases in which the capacity

region can be characterized only with the help of an auxiliary

random variable.
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The main result of this paper is provided in the following

theorem. It bounds the cardinality of the support set of the

capacity achieving input distributions.

Theorem 1. Let P be an arbitrary point on the boundary of

the capacity region C (P1, P2) of the memoryless MAC with

a one-bit ADC front end (as shown in Figure 1) achieved

by FP
U (u)F

P
X1|U (x1|u)FP

X2|U (x2|u). Let lP be the slope of

the line tangent to the capacity region at this point. For any

u ∈ U , the conditional input distributions FP
X1|U (x1|u) and

FP
X2|U (x2|u) have at most n1 and n2 points of increase2,

respectively, where

(n1, n2) =

⎧⎨
⎩

(2, 3) lp < −1
(2, 2) lp = −1
(3, 2) lp > −1

. (3)

Proof. The proof is provided in Section IV.

Proposition 1, Lemma 1 and Theorem 1 above establish

upper bounds on the number of mass points of the distributions

that achieve a boundary point. The significance of this result is

that once it is known that the optimal inputs are discrete with at

most certain number of mass points, the capacity region along

with the optimal distributions can be obtained via computer

programs.

IV. PROOF OF THEOREM 1

Any point on the boundary of the capacity region, denoted

by (Rb
1, R

b
2), can be written as

(Rb
1, R

b
2) = arg max

(R1,R2)∈C (P1,P2)
R1 + λR2,

for some λ > 0.

Any rate pair (R1, R2) ∈ C (P1, P2) is within the pentagon

defined by (2) for some distribution FUFX1|UFX2|U that

satisfies the power constraints. Therefore, due to the structure

of the pentagon, the problem of finding the boundary points

is equivalent to the following maximization problem.

max
(R1,R2)∈C (P1,P2)

R1 + λR2

=

{
max I(X1;Y |X2, U) + λI(X2;Y |U) 0 < λ ≤ 1
max I(X2;Y |X1, U) + λI(X1;Y |U) λ > 1

,

(4)

where on the right hand side (RHS) of (4), the maximizations

are over all FUFX1|UFX2|U that satisfy the power constraints.

For any product of distributions FX1
FX2

and the channel

in (1), let Iλ be defined as

Iλ(FX1FX2) �
{

I(X1;Y |X2) + λI(X2;Y ) 0 < λ ≤ 1
I(X2;Y |X1) + λI(X1;Y ) λ > 1

.

(5)

With this definition, (4) can be written as

max
5∑

i=1

pU (ui)Iλ(FX1|U (x1|ui)FX2|U (x2|ui)),

2A point Z is said to be a point of increase of a distribution if for any
open set Ω containing Z, we have Pr{Ω} > 0.

where the maximization is over product distributions of the

form pU (u)FX1|U (x1|u)FX2|U (x2|u), |U| ≤ 5, such that

5∑
i=1

pU (ui)E[X
2
j |ui] ≤ Pj , j = 1, 2.

Proposition 2. For a given FX1 and any λ > 0,

Iλ(FX1FX2) is a concave, continuous and weakly differen-

tiable function of FX2
. In the statement of this Proposition,

FX1
and FX2

could be interchanged.

Proof. The proof is provided in [8, Appendix A].

Proposition 3. Let P ′
1, P

′
2 be two arbitrary non-negative

finite real numbers. For the following problem

max
FX1

FX2
:

E[X2
j ]≤P ′

j , j=1,2

Iλ(FX1
FX2

), (6)

the optimal input distributions F ∗
X1

and F ∗
X2

, which are not

unique in general, have the following properties,

(i) The support sets of F ∗
X1

and F ∗
X2

are bounded subsets of

R.

(ii) F ∗
X1

and F ∗
X2

are discrete distributions that have at most

n1 and n2 points of increase, respectively, where

(n1, n2) =

⎧⎨
⎩

(3, 2) 0 < λ < 1
(2, 2) λ = 1
(2, 3) λ > 1

.

Proof. We start with the proof of the first claim. Assume

that 0 < λ ≤ 1, and FX2 is given. Consider the following

optimization problem:

I∗FX2
� sup

FX1
:

E[X2
1 ]≤P ′

1

Iλ(FX1
FX2

). (7)

From Proposition 2, Iλ is a continuous, concave function of

FX1
. Also, the set of all CDFs with bounded second moment

(here, P ′
1) is convex and compact3. Therefore, the supremum

in (7) is achieved by a unique distribution F ∗
X1

. Since for any

FX1(x) = s(x − x0) with |x0|2 < P ′
1, where s(·) denotes

the unit step function, we have E[X2
1 ] < P ′

1, the Lagrangian

theorem and the Karush-Kuhn-Tucker conditions state that

there exists a θ1 ≥ 0 such that

I∗FX2
= sup

FX1

{
Iλ(FX1FX2)− θ1

(∫
x2dFX1(x)− P ′

1

)}
.

(8)

Furthermore, the supremum in (8) is achieved by F ∗
X1

, and

θ1

(∫
x2dF ∗

X1
(x)− P ′

1

)
= 0. (9)

Lemma 2. The Lagrangian multiplier θ1 is nonzero.

Proof. Having a zero Lagrangian multiplier means that the

power constraint is inactive. In other words, if θ1 = 0, (7) and

(8) imply that

sup
FX1

:

E[X2
1 ]≤P ′

1

Iλ(FX1
FX2

) = sup
FX1

Iλ(FX1
FX2

). (10)

3The compactness follows from [11, Appendix I].
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We prove that (10) does not hold by showing that

L.H.S of(10) ≤ 1−Q
(√

P ′
1 +

√
P ′
2

)
< 1 = R.H.S of(10).

The details are provided in [8, Appendix B].

Let ĩλ(x1;FX1
|FX2

) and iλ(x2;FX2
|FX1

) be defined as

ĩλ(x1;FX1
|FX2

) �
∫ +∞

−∞

(
D (p(y|x1, x2)||p(y;FX1

FX2
))

+ (1− λ)

1∑
y=0

p(y|x1, x2) log
p(y;FX1FX2)

p(y;FX1
|x2)

)
dFX2

(x2),

iλ(x2;FX2
|FX1

) �
∫ +∞

−∞
D (p(y|x1, x2)||p(y;FX1

FX2
))dFX1

(x1)

− (1− λ)D (p(y;FX1 |x2)||p(y;FX1FX2)) ,

where p(y;FX1
FX2

) is nothing but the pmf of Y with the

emphasis that it has been induced by FX1
and FX2

. Likewise,

p(y;FX1
|x2) is the conditional pmf p(y|x2) when X1 is drawn

according to FX1 . It can be verified that

Iλ(FX1FX2) =

∫ +∞

−∞
ĩλ(x1;FX1 |FX2)dFX1(x1)

=

∫ +∞

−∞
iλ(x2;FX2 |FX1)dFX2(x2).

Note that (8) is an unconstrained optimization problem over

the set of all CDFs, and a necessary condition for the opti-

mality of F ∗
X1

is∫
{̃iλ(x1;F

∗
X1

|FX2
)+θ1(P

′
1−x2

1)}dFX1
(x1) ≤ I∗FX2

, ∀FX1
,

(11)

which is equivalent to

ĩλ(x1;F
∗
X1

|FX2
) + θ1(P

′
1 − x2

1) ≤ I∗FX2
, ∀x1 ∈ R, (12)

with equality if and only if x1 is a point of increase of F ∗
X1

.

In what follows, we prove that in order to satisfy (12), F ∗
X1

must have a bounded support by showing that the left hand

side (LHS) of (12) goes to −∞ with x1.

It can be verified that (see [8]),

lim
|x1|→+∞

ĩλ(x1;F
∗
X1

|FX2) < +∞. (13)

From (13), and the fact that θ1 > 0 (see Lemma 2), the LHS

of (12) goes to −∞ when |x1| → +∞. Since any point of

increase of F ∗
X1

must satisfy (12) with equality, and I∗FX2
≥

0, it is proved that F ∗
X1

has a bounded support, i.e., X1 ∈
[A1, A2] for some A1, A2 ∈ R.4

Similarly, for a given FX1
, the optimization problem

I∗FX1
= sup

FX2
:

E[X2
2 ]≤P ′

2

Iλ(FX1
FX2

),

boils down to the following necessary condition

iλ(x2;F
∗
X2

|FX1) + θ2(P
′
2 − x2

2) ≤ I∗FX1
, ∀x2 ∈ R, (14)

for the optimality of F ∗
X2

, which holds with equality if and

only if x2 is a point of increase of F ∗
X2

. Note that there are two

4Note that A1 and A2 are determined by the choice of FX2
.

main differences between (14) and (12). First is the difference

between iλ and ĩλ. Second is the fact that we do not claim

θ2 to be nonzero, since the approach used in Lemma 2 cannot

be readily applied to θ2. Nonetheless, the boundedness of the

support of F ∗
X2

can be proved by inspecting the behaviour

of the LHS of (14) when |x2| → +∞. More specifically,

if θ2 > 0, the LHS of (14) goes to −∞ with |x2| which

proves that X∗
2 is bounded. For the case of θ2 = 0, we rely

on the fact that iλ approaches its limit from below, as shown

in [8, Appendix E]. This proves that X∗
2 must have a bounded

support.

Remark 3. We remark here that the order of showing

the boundedness of the supports is important. First, for a

given FX2
(not necessarily bounded), it is proved that F ∗

X1

is bounded. Then, for a given bounded FX1 , it is shown that

F ∗
X2

is also bounded. The order is reversed when λ > 1, and

the proof follows the same steps as in the case of λ ≤ 1.

Therefore, it is omitted.

We next prove the second claim in Proposition 3. We assume

that 0 < λ < 1, and a bounded FX1
is given. We already know

that for a given bounded FX1
, F ∗

X2
has a bounded support

denoted by [A1, A2]. Therefore,

I∗FX1
= sup

FX2

{
Iλ(FX1

FX2
)− θ2

(∫
x2dFX2

(x)− P ′
2

)}

= sup
FX2

∈S2

{
Iλ(FX1FX2)− θ2

(∫
x2dFX2(x)− P ′

2

)}
,

where S2 denotes the set of all probability distributions on

the Borel sets of [A1, A2]. Let p∗0 = pY (0;FX1
F ∗
X2
) denote

the probability of the event Y = 0, induced by F ∗
X2

and the

given FX1
. The set

F2 =

{
FX2

∈ S2|
∫

p(0|x2)dFX2
(x2) = p∗0

}

is the intersection of S2 with one hyperplane5. We can write

I∗FX1
= sup

FX2
∈F2

{
Iλ(FX1

FX2
)− θ2

(∫
x2dFX2

(x)− P ′
2

)}
.

(15)

Note that having FX2 ∈ F2, the objective function in (15)

becomes

λH(Y )︸ ︷︷ ︸
constant

+

(1− λ)H(Y |X2)−H(Y |X1, X2)−θ2

(∫
x2dFX2

(x)− P ′
2

)
︸ ︷︷ ︸

linear in FX2

.

Since the linear part is continuous and F2 is compact, the

objective function in (15) attains its maximum at an extreme

point of F2, which, by Dubins’ theorem [10], is a convex

combination of at most two extreme points of S2. Since the

extreme points of S2 are the CDFs having only one point

of increase in [A1, A2], we conclude that, given any bounded

FX1
, F ∗

X2
has at most two mass points.

5Note that S2 is convex and compact.
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Now, assume that an arbitrary FX2
is given with at most

two mass points denoted by {x2,i}2i=1. It is already known that

the support of F ∗
X1

is bounded, which is denoted by [A′
1, A

′
2].

Let S1 denote the set of all probability distributions on the

Borel sets of [A′
1, A

′
2]. The set

F1=

{
FX1

∈S1

∣∣∣∣
∫

p(0|x1, x2,j)dFX1
(x1)=p(0;F ∗

X1
|x2,j),

j ∈ [1 : 2]

}
,

is the intersection of S1 with two hyperplanes. In a similar

way,

I∗FX2
= sup

FX1
∈F1

{
Iλ(FX1

FX2
)− θ1

(∫
x2dFX1

(x)− P ′
1

)}
,

(16)

and having FX1
∈ F1, the objective function in (16) becomes

λH(Y ) + (1− λ)
2∑

i=1

pX2
(x2,i)H(Y |X2 = x2,i)

︸ ︷︷ ︸
constant

−H(Y |X1, X2)− θ1

(∫
x2dFX1(x)− P ′

1

)
︸ ︷︷ ︸

linear in FX1

. (17)

Therefore, given any FX2
with at most two points of increase,

F ∗
X1

has at most three mass points.

When λ = 1, the term with summation in (17) disappears,

which means that F1 could be replaced by{
FX1 ∈ S1|

∫ +∞

−∞
p(0|x1)dFX1(x1) = p̃∗0

}
,

where p̃∗0 = pY (0;F
∗
X1

FX2) is the probability of the event

Y = 0, which is induced by F ∗
X1

and the given FX2
. Since the

number of intersecting hyperplanes has been reduced to one, it

is concluded that F ∗
X1

has at most two points of increase.

Remark 4. Note that the order of showing the discreteness

of the support sets is also important. First, for a given bounded

FX1 (not necessarily discrete), it is proved that F ∗
X2

is discrete

with at most two mass points. Then, for a given discrete FX2

with at most two mass points, it is shown that F ∗
X1

is also

discrete with at most three mass points (two mass points) when

λ < 1 (when λ = 1). When λ > 1, the order is reversed and

it follows the same steps as in the case of λ < 1. Therefore,

it is omitted.

Remark 5. (Settling a conjecture) Consider a point-

to-point real AWGN channel with a K-bin (i.e., log2 K-

bit) ADC front end. It is shown in [4] that the capacity-

achieving input distribution for this channel (with average

input power constraint), has at most K+1 mass points, while

in the numerical results, K mass points always appear to be

sufficient, which leaves the sufficiency of K mass points as

a conjecture. Therefore, it has been an open problem whether

K mass points are indeed sufficient or not. The answer is

positive. If the average power constraint, which is a linear

function of its corresponding input distribution, is treated as

an intersecting hyperplane, Dubins’ theorem states that K+1
mass points is sufficient. A simple trick, as used in the proof

of Theorem 1, is to take the average power constraint into the

objective function and take into account the uniqueness of the

solution. This reduces the number of intersecting hyperplanes

by one, and results in the sufficiency of K mass points. This is

also the case for asymmetric quantizers (e.g., [12]), since this

reduction of the number of hyperplanes does not rely on the

structure of the quantizer. In conclusion, the number of mass

points is not affected by any number of linear constraints (e.g.,

E[X4] ≤ K, etc) in the optimization.

V. CONCLUSION

We have studied the capacity region of a two-transmitter

Gaussian MAC under average input power constraints at the

transmitters and one-bit ADC front end at the receiver. We

have shown that an auxiliary random variable is necessary for

characterizing the capacity region. We have derived an upper

bound on the cardinality of this auxiliary variable, and proved

that the distributions that achieve the boundary points of the

capacity region are finite and discrete. Based on this result,

the evaluation of the capacity region and finding efficient

suboptimal signaling schemes are subjects of our ongoing

research. Finally, we settled the conjecture of the sufficiency

of K mass points in a point to point AWGN channel with a

K-bin quantizer at the receiver.
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