
Multicast–Aware Proactive Caching in Wireless
Networks with Deep Reinforcement Learning

Samuel O. Somuyiwa, András György and Deniz Gündüz
Department of Electrical and Electronic Engineering,

Imperial College London, UK

Abstract—We consider mobile users randomly requesting con-
tents from a single dynamic content library. A random number
of contents are added to the library at every time instant and
each content has a lifetime, after which it becomes irrelevant to
the users, and a class-specific request probability with which a
user may request it. Multiple requests for a single content are
served through a common multicast transmission. Contents can
also be proactively stored, before they are requested, in finite
capacity cache memories at the user equipment. Any time a
content is transmitted to some users, a cost, which depends on
the number of bits transmitted and the channel states of the
receiving users at that time instant, is incurred by the system.
The goal is to minimize the long term expected average cost. We
model the problem as a Markov decision process and propose a
deep reinforcement learning (DRL)-based policy to solve it. The
DRL-based policy employs the deep deterministic policy gradient
method for training to minimize the long term average cost. We
evaluate the performance of the proposed scheme in comparison
to traditional reactive multicast transmission and other multicast-
aware caching schemes, and show that the proposed scheme
provides significant performance gains.

I. INTRODUCTION

Caching and multicast transmission are two methods that
have been proposed to handle some of the challenges associ-
ated with growing video content traffic in wireless networks.
Caching enables replication of contents at nearby base stations
(BS) or even directly at user equipment (UE), which can
reduce network congestion [1], [2], energy consumption [3], as
well as latency [4]. On the other hand, multicasting enables the
delivery of a content to multiple users in a single transmission,
resulting in the efficient utilization of the available bandwidth
and energy [5]. Muticast transmission is already included in
3GPP standards as evolved Multimedia Broadcast Multicast
Service (eMBMS) [6].

Joint implementation of these two solutions promises to
bring gains greater than the sum of the two, as the ability
to proactively cache contents can create further multicasting
opportunities. This has been studied in [7] for reduction of
energy cost, in [8] for joint minimization of delay, power and
fetching costs, and in [9] for maximization of transmission
probability. However, existing works do not consider dynamic
content generation or variations in content popularity, which

This work was partially supported by the European Research Council
(ERC) through project BEACON (No. 725731), the European Union’s Hori-
zon 2020 Research and Innovation Programme through project SCAVENGE
(No. 675891), and the Petroleum Technology Development Fund (PTDF).

are typical in real settings, e.g., viral contents in social
networks or news videos, where contents are continuously
generated and remain popular for a limited time duration [10].

In this paper, we consider multiple mobile users randomly
requesting contents (video files) from such a dynamic content
library, where contents are generated with random lifetimes,
which denotes the time duration that they remain relevant to
at least one user, and each content has a request probability
at which it can be independently requested by any user at
any time period. Contents are grouped into a finite number
of classes, which determines their request probabilities. We
assume that the users request a content from the library
only once, as is the case in some social network platforms.
Therefore, any content that is requested by a user becomes
irrelevant to that user. Contents that become irrelevant to all
the users are removed from the library.

Each UE is equipped with a cache memory of finite ca-
pacity. A content manager (CM) updates the cache memory
of each UE by downloading contents in advance of user
requests and storing them in the cache memory, and may
also remove contents from the cache memory when necessary.
We assume that all the contents are of equal size, and each
content occupies a unit space in memory. The state of the
channel between each UE and the BS varies with time due to
several factors, such as user location, coverage, and channel
conditions. In particular, we consider the channel state to be
the power at which a content has to be transmitted to the UE. A
transmission energy cost is incurred any time the BS transmits
contents to the UEs. This cost depends on the number of
contents downloaded and on the channel states of the users.
Whenever a user requests a content that is not already in its
cache, it is downloaded at a cost that depends on the current
channel state of the user; if the content is already in the user’s
cache, it is served from the cache at no additional cost.

We formulate the problem as a Markov decision process
with side information (MDP-SI) [11], which is a special
Markov decision process (MDP) that consists of a controllable
state and an uncontrollable state, which consists of the inde-
pendently and identically distributed (i.i.d) side information
that affects the cost. The size of the state and action spaces
are very large, making it infeasible to compute an optimal
policy. Therefore, we employ policy approximation and deep
reinforcement learning (DRL), in particular deep deterministic
policy gradient method (DDPG) [12], to train the CM to
minimize the long term expected average cost on the system.

Unlike in [11], the complexity of the problem also makes it
infeasible to compute a lower-bound to evaluate the perfor-
mance of the trained CM. Instead, we compare its performance
with other multicast-aware caching schemes as well as the
traditional reactive scheme with multicast transmission.

II. SYSTEM MODEL

We consider a slotted time communication system. We
denote the set of contents in the library at the beginning of
time t by Ft. We assume that a random number of contents,
denoted by Mt ∈ {0, . . . ,Mmax}, are generated and added to
the library at the beginning of each time slot. Each content
comes with a lifetime after which it expires and becomes
irrelevant to all the users. We denote the lifetime of content
m generated at time t by Km

t , where 1 ≤ Km
t ≤ Kmax. A

content generated at time t with lifetime Km
t expires by the

end of time t+Km
t − 1. Each content in the library belongs

to one of Q classes, where a content belonging to class q
is requested by any user with probability pq , independently
at each time slot. We assume that the lifetime and class
of each content are known to the CM when the content is
generated. We also assume that a user requests a content only
once. Therefore, any content that has not expired but has been
requested by a user becomes irrelevant to that user and can
no longer be requested by that user. We also assume that any
content that becomes irrelevant to all the users, either because
its lifetime expires or because it has already been requested
by all the users, is automatically removed from the library. All
the remaining contents at time t are called relevant contents.

We consider N users in the system, where user n ∈ [N] ,
{1, . . . , N} is equipped with a cache memory of capacity Bn
where the contents can be stored in a proactive manner. We
denote the set of contents in the cache memory of user n at
the beginning of time t by Int , where |Int | ≤ Bn, and the set
of relevant contents that have already been requested by user
n by the beginning of time t by Hnt . To simplify notation,
we denote the vector of sets of contents in the cache memory
of all the users by It, that is, It = [I1t , . . . , INt], and the
vector of sets of requested contents by all the users by Ht,
that is, Ht = [H1

t , . . . ,HNt]. Any content in the library can be
uniquely identified by its remaining lifetime, its class, the users
that have it in their cache, and the users that have requested
it. Let us define a location flag for each content as a sequence
it ∈ {0, 1}N , where it(n) = 1, n ∈ [N], implies that user n
has the content in its cache at time t, while it(n) = 0 implies
otherwise. Similarly, we define a request vector ht ∈ {0, 1}N ,
where ht(n) = 1 implies that user n has requested the content
and ht(n) = 0 implies otherwise. Given these definitions,
any content f ∈ Ft that has remaining lifetime L at time
t and belongs to class q can be represented by a quadruple
(L, q, it,ht).

We denote the set of contents requested by user n at time
t by Rnt = (R(1,n)

t ,R(2,n)
t), where R(1,n)

t ⊆ Ft \ (Int ∪
Hnt), that is, it is the set of requested contents, which are
not in the user’s cache memory and have not been requested
by the user, and R(2,n)

t ⊆ Int is the set of requested contents

that are in the user’s cache memory. Each user request Rnt
depends on the class probability pq of relevant contents and is
independent of other user requests. All the contents in R(1,n)

t

are downloaded at time t, for all n, and contents in R(2,n)
t

are moved from the cache memory for the user to consume.
We denote the combined request of all the users at time t by
Rt = [R(1),R(2)], where R(1)

t = [R(1,1)
t , . . . ,R(1,N)

t] and
R(2)
t = [R(2,1)

t , . . . ,R(2,N)
t].

The CM can exploit the cache memory at the UEs by
pushing contents into them when the wireless links between
the UEs and the BS have good quality, in order to reduce
the cost. It may also discard contents from cache memories
if necessary. We denote the set of contents downloaded by
user n at time t by D(1,n)

t , and the set of contents discarded
from the cache memory of user n at time t by D(2,n)

t . Note
that D(1,n)

t ⊇ R(1,n)
t and D(2,n)

t ⊇ R(2,n)
t . We denote the

combined set of contents downloaded and discarded at time
t by Dt = [D(1)

t ,D(2)
t], where D(1)

t = [D(1,1)
t , . . . ,D(1,N)

t]

and D(2)
t = [D(2,1)

t , . . . ,D(2,N)
t]. The CM can also exploit

the capability of the BS to perform multicast transmissions to
download a single content to multiple UEs at the same time.
Therefore, the CM decides the contents that will be transmitted
by the BS as well as the users that will receive the transmitted
contents. We denote the set of contents multicast at time t
by D′t ,

⋃N
n=1D

(1,n)
t . We denote the cost for transmitting

content j ∈ D′t at time t by εjt .
The cost at time t depends on the channel states (power

at which a content has to be transmitted to the user) of the
users at that time. We denote the channel state of user n at
time t by Cnt , and the vector of channel states of all the users
at time t by Ct = [C1

t , . . . , C
N
t]. For all n and t, Cnt is an

independent realization of a random variable C ∈ R+ with
cumulative distribution function (cdf) PC(c) and is bounded
by Cmax. Assuming that the BS multicasts content j ∈ D′t at
time t to users in set U , |U| ≤ N , the associated cost is

εjt = max
n∈U

Cnt , (1)

and the total cost of transmitting all the contents in D′t is

µt =
∑
j∈D′t

εjt . (2)

We assume that the sequences {Km
t }, {Mt}, and {Ct} are

independent. Based on the above description, the problem can
be formulated as an MDP as described in the next section.

III. PROBLEM FORMULATION

The CM aims to exploit proactive caching and mutlicast
transmission jointly to reduce the transmission cost incurred
by the BS in the long run. Therefore, based on (2), its goal is
to minimize the long-term expected average cost defined as

ρ , lim sup
T→∞

E

[
1

T

T∑
t=1

µt

]
. (3)

We formulate the problem as an MDP-SI, which is charac-
terized by the quintuple (S,A,P, µ, PZ), where S = (Ŝ,Z)

is the state space, which consists of a controllable state
Ŝt ∈ Ŝ and an uncontrollable state Zt ∈ Z . In particular,
Zt is a sequence of i.i.d side information with cdf PZ that
is independent of the actions of the agent but affects the cost
function. A is the action space, µ : S × A → R is the cost
function and P : S ×A×S → [0, 1] is the probability kernel.
Assuming that the actions of a learning agent are governed
by a policy π : S → A, and we let Π denote the set of all
such policies. The goal in the MDP-SI is to find the optimal
policy π ∈ Π that minimizes the infinite horizon average
cost ρ = limT→∞ E

[
1
T

∑T
t=1 µ(St, At)

∣∣S1

]
. We denote the

infinite horizon average cost when A(St) = π(St) by ρπ . The
differential value function for any state s ∈ S is given as

V π(s) = E

[∞∑
t=1

(µ(St, π(St))− ρπ)

∣∣∣∣∣S1 = s

]
. (4)

For a single user, we show in [11] that under certain con-
ditions, the optimal policy π∗(s), for any s ∈ S , which
minimizes ρπ and satisfies

V π
∗
(s) = min

a∈A

{
µ(s, a)− ρπ∗ +

∑
s′∈S

P (s′|s, a)V π
∗
(s′)

}
,

(5)
with a = π∗(s) minimizing the expression on the right hand
side, exists and that the policy π∗(s) is a piecewise constant
function.

For this problem, the controllable state ŝ ∈ Ŝ at time t is
Ŝt = (It,Ht,Rt) consisting of the combined set of contents
in users’ caches, the combined set of relevant contents already
requested by users, and the combined set of instantaneous user
requests. The uncontrollable state z ∈ Z at time t is Zt = Ct,
that is, it is the vector of channel states, which are the i.i.d
side information that affect the cost. The action a ∈ A at time
t is At = Dt, that is, it is the combined sets of downloaded
and discarded contents.

The controllable state transitions are

Int+1 =
(
Int \ D

2,n
t

)
∪
(
D1,n
t \ R1,n

t

)
, (6a)

Hnt+1 = Hnt ∪R
1,n
t ∪R2,n

t , (6b)

with R(1,n)
t+1 and R(2,n)

t+1 transitioning with respect to request
probabilities {pq}Qq=1 of contents in Ft+1, for all n =
1, . . . , N . The uncontrollable state transitions are governed by
the cdf PC(c). The cost function µ(St, At) is given in (2).

Computing the optimal policy for this problem is not
feasible due to the complexity of the problem and the curse of
dimensionality. Therefore, we employ policy gradient method
with function approximation [13], which uses a parameterized
function to approximate and represent the policy, and allows
a learning agent to directly search the parameter space.

IV. POLICY GRADIENT REINFORCEMENT LEARNING

We denote a policy parameterized with θ by πθ. The
objective is to find the optimal parameter vector θ∗ that
minimizes the expected average cost ρπθ along the infinite

trajectory τθ = (S1, A1, µ1, S2, A2, µ2, . . . ,) drawn from the
trajectory distribution Pθ following policy πθ. Let θi denote
the estimated vector at the end of step i. We employ stochastic
gradient descent, and iteratively update the estimated param-
eter vector in the direction of the policy gradient ∇θρ

πθ , as
follows: θi+1 = θi − λ∇θρ

πθ , where λ > 0 is the step size.
We let J(τ) = lim supT→∞

1
T

∑T
t=1 µ(St, At). Then the

gradient can be estimated as

∇θρ
πθ ≈

∫
∇θPθ(τ)Jπθ

(τ)dτ,

≈ E[∇θ logPθ(τ)J(τ)],

where the expectation with respect to Pθ can be approxi-
mated over sampled trajectories of finite length without the
knowledge of Pθ. Assuming that πθ is a stochastic policy, the
gradient can be estimated as

∇θρ
πθ ≈ E

[
T∑
t=1

∇θ log πθ(At|St)J(τ)

]
.

This gradient can be written as [13]

∇θρ
πθ = E

[
T∑
t=1

∇θ log πθ(At|St)Qπθ (St, At)

]
, (7)

where Qπθ (s, a) is the state-action value function, which is
given as

Qπθ (s, a) = E

[∞∑
t=1

(µ(St, At)− ρπθ)

∣∣∣∣∣S1 = s,A1 = a

]
.

(8)
It is shown in [14] that a deterministic policy gradient is the
limiting case of the stochastic policy gradient in (7) as the
variance of the policy tends to zero. If πθ is a deterministic
policy, the gradient in (7) can be written as

∇θρ
πθ = E

[
T∑
t=1

∇θπθ(St)∇aQπθ (St, a)
∣∣
a=πθ(St)

]
. (9)

The state-action value function Qπθ (s, a) can be estimated
by using temporal difference learning methods, e.g., actor-
critic [15], which can be implemented using a function ap-
proximator Qw(s, a) with parameter w.

Due to the large size of the state and action spaces, we
will employ neural networks as function approximators, and
the DDPG method [12] to train the policy. DDPG uses off-
policy actor-critic temporal difference learning to train the
actor πθ(s). It learns the critic Qw(s, a) through experience-
replay by storing and sampling mini-batches of the tuple
(Si, Ai, µi, Si+1), obtained in step i, from a replay memory,
and optimising parameter w by minimising the mean square
error loss between a target value µi + γQw(Si+1, πθ(Si+1)),
where γ ∈ (0, 1] is a discount factor, and the value Qw(Si, Ai)
in a supervised learning approach. To improve the stability of
learning the actor and the critic networks, separate networks
Q′w′(s, a) and π′θ′(s) are used for the target values. In an
initial step, the weights of the actor and critic networks are

assigned to the target networks, then in the subsequent steps
when the actor and critic networks are updated, the weights
of the target networks are slowly updated as follows

θ′ ← βθ + (1− β)θ′, (10)
w′ ← βw + (1− β)w′,

where β � 1 is a hyperparameter. Action exploration is
performed independently from the learning algorithm by sam-
pling noise from a random process and adding it to action
a = πθ(s). We will use a discount factor close to 1 to
approximate the average cost performance. We describe the
learning algorithm in the next section.

V. LEARNING ALGORITHM

In addition to the fact that the state and action spaces are
prohibitively large, the size of the content library also varies
over time. This implies that the sizes of the state and action
spaces vary over time. However, a deep neural network (DNN)
must be designed to have a fixed number of neurons/units
in each layer. To handle this, we extract a fixed number of
features from the contents in the library at every time instant
to represent the state (input layer of the DNN) of the actor
and critic networks. The action At = Dt in time t consists of
contents downloaded to the UEs in the wireless network and
contents discarded from the cache memory of users. All user
requests at time t, that is, Rt, must be delivered at that time,
and are inevitably included in action At. Therefore, the action
of the CM governed by a policy involves selection of contents
to cache, contents to discard from caches, and the users whose
caches will be updated with these contents.

To make its caching decisions, the CM assigns power
level to each content in the library, such that only the users
whose channel states are below the assigned power level of
a transmitted content can receive it. That is, assigning zero
power level implies that the content is not transmitted to any
user. To handle this, the output layer of the actor network,
which is also the second input layer (action input) of the critic
network, is a k-dimensional weight vector α = [α1, . . . , αk].
The CM extracts a k-dimensional content-specific feature
vector xf = [x1, . . . , xk] from each content f ∈ F , using the

Algorithm 1 Cache Update Strategy

Input: G1 ← Ft\(Hnt ∪Int ∪R
(1,n)
t) and G2 ← Int \R

(2,n)
t

Obtain b← min{|G1|, Bn} and initialize b′ ← 1
Obtain ordered sets {j1, . . . , jb} ⊆ G1 w.r.t rj1t ≥ . . . ≥ r

jb
t ,

and {k1, . . . , kb} ⊆ G2 w.r.t rk1t ≤ . . . ≤ r
kb
t

while b′ ≤ b do
if rjb′t − r

kb′
t ≥ Cnt then

Cache content jb′ and discard content kb′
b′ ← b′ + 1

else
b′ ← b+ 1

end if
end while

content identifier (L, q, i,h), and computes the power level
for each content as an inner product of the two vectors. That
is, for a content f ∈ Ft at time t, its power level is

rft = αᵀ
t x

f
t . (11)

Note that estimation of the power levels is done globally, that
is, all the users and contents are considered, whereas cache
update is done locally, using the assigned power levels, for
each user considering the contents relevant to the user. We
describe the content ordering and caching strategy of the CM
for any user n = 1, . . . , N and time t in Algorithm 1. We
assume that an empty space in the cache memory of user n
contains a fictitious content with assigned power level 0, such
that discarding the content means discarding no content at all.

VI. NUMERICAL SIMULATIONS

We evaluate the performance of the proposed DRL-
based multicast transmission with proactive caching (MT-PC)
scheme in comparison with three baselines described below.
• Multicast transmissions without caching (MT): This is the

traditional content delivery scheme in wireless networks.
A content requested by multiple users is transmitted in a
single multicast stream to the users requesting it.

• Multicast transmissions with reactive caching (MT-RC):
This is same as the MT scheme, but with the addi-
tional capacity of caching transmitted contents into empty
spaces in the cache memories of users who have not
requested the contents but whose channel states allow
them to recieve the content anyway.

• Multicast transmissions with priority-based reactive
caching (MT-PRC): Modified MT-RC scheme, where
contents are cached and removed from caches, based
on a priority ordering. Denoting the value of a content
with remaining lifetime L and class-request probability
pq as VqL, we estimate the value of each content as
VqL = pq · E [C] + (1 − pq)E

[
min{C,VqL−1}

]
and keep

contents with the highest values in the cache.
For simulations, Mt is drawn uniformly at random from

the set {1, 2, . . . , 8}, and the lifetime Km
t of each content

m ∈ {1, 2, . . .Mt} is drawn uniformly at random from the
set {5, 10, 15}. We consider Q = 3 classes of contents, with
request probabilities [p1, p2, p3] = [0.06, 0.12, 0.18], and each
generated content is allocated one of the classes uniformly
at random. We obtain Ct using Shannon’s capacity formula,
and we select parameters consistent with the LTE network
model and 3GPP channel model [16]. We normalise Ct so
that Cmax = 1.

We use 2 hidden layers with 400 and 200 units, respectively,
for the actor and critic networks, and set the target update pa-
rameter β = 10−5, discount factor γ = 0.99, and learning rates
10−6 and 10−5 for the actor and critic networks, respectively.
We train with mini-batch size of 64 and replay memory of
size 104. For action exploration, we sample exploration noise
from a Gaussian distribution with mean 0 and variance 0.001,
and in each training episode h, we add exploration noise to
the weight vector αi, obtained in step i, with probability δh.

2 4 6 8 10
Number of Users

2

4

6

8
A
ve
ra
ge

E
n
er
gy

C
os
t

MT

MT-RC

MT-PRC

MT-PC

Fig. 1: Average energy cost vs. number of users with Bn = 50
for any user n.

We update the probability as δh+1 = max{0, δh − 0.1}. The
number of extracted state features is 3QKmax + N + 1, and
the number of content features is 4.

In Figure 1 we plot the average energy cost with respect
to the number of users N . As expected, the average energy
cost increases with N ; however, the proposed MT-PC scheme
has the lowest energy cost among all the schemes consid-
ered. Moreover, the gap between MT-PC and MT-PRC also
increases with N . MT-PC has a performance gain of 14% over
MT-PRC and 27% over MT with N = 2 users, increasing to
18% and 59%, respectively, with N = 10 users. In Figure
2 we plot the average energy cost with respect to the cache
capacity. As expected, the performance of the MT scheme
does not depend on the cache capacity as it does not utilize
the cache memories, while the other schemes improve with
increasing cache capacity before saturation. MT-PRC performs
much better than MT-RC when the cache capacity is low (less
than 40) because it stores contents that are more likely to be
requested in the cache. The proposed MT-PC scheme performs
close to MT-PRC when the cache capacity is low (below
10), but outperforms it as cache capacity increases, with a
performance gain that increases as cache capacity increases,
showing that DRL allows us to learn to cache the contents
that are likely to be decoded while creating and exploiting the
multicasting opportunities as much as possible.

VII. CONCLUSIONS

We considered the problem of multicast transmission to-
gether with proactive caching of contents into limited capacity
cache memories of multiple mobile users. We consider users
randomly requesting contents from a dynamic content library,
which are served by a BS over a time-varying wireless channel.
In this model, proactive caching provides energy savings
due to two separate potential gains: It allows transmission
of contents at better channel conditions, and also allows
multicasting to multiple users, benefiting from the broadcast
advantage. In order to minimize the long term average energy
cost, a CM must decide which contents to transmit to which
users at each time slot, and which content to keep in each

10 20 30 40 50 60
Cache Capacity

4

5

6

7

8

9

A
ve
ra
ge

E
n
er
gy

C
os
t

MT

MT-RC

MT-PRC

MT-PC

Fig. 2: Average energy cost vs. cache capacity with N = 10.

user’s cache. We proposed a solution based on DRL to
tackle the complexity of the problem. We showed that the
proposed scheme outperforms baseline multicast transmission
and caching schemes.

REFERENCES

[1] P. Blasco and D. Gündüz, “Multi-armed bandit optimization of cache
content in wireless infostation networks,” in 2014 IEEE International
Symposium on Information Theory, June 2014, pp. 51–55.

[2] S. Muller, O. Atan, M. van der Schaar, and A. Klein, “Context-
aware proactive content caching with service differentiation in wireless
networks,” IEEE Trans. on Wireless Comms., vol. 16, no. 2, Feb 2017.

[3] M. Gregori, J. Gomez-Vilardebo, J. Matamoros, and D. Gündüz, “Wire-
less content caching for small cell and D2D networks,” IEEE Journal
on Sel. Areas in Comms., vol. 34, no. 5, pp. 1222–1234, May 2016.

[4] M. S. ElBamby, M. Bennis, W. Saad, and M. Latva-aho, “Content-aware
user clustering and caching in wireless small cell networks,” in Int’l
Symp. on Wireless Comms. Systems (ISWCS), Aug 2014, pp. 945–949.

[5] C. Huang, J. Zhang, H. V. Poor, and S. Cui, “Delay-energy tradeoff in
multicast scheduling for green cellular systems,” IEEE Journal on Sel.
Areas in Comms., vol. 34, no. 5, pp. 1235–1249, May 2016.

[6] 3rd Generation Partnership Project (3GPP). (2016). [Online]. Available:
http://www.3gpp.org/specifications/releases/71-release-9

[7] K. Poularakis, G. Iosifidis, V. Sourlas, and L. Tassiulas, “Exploiting
caching and multicast for 5G wireless networks,” IEEE Trans. on
Wireless Comms., vol. 15, no. 4, pp. 2995–3007, April 2016.

[8] B. Zhou, Y. Cui, and M. Tao, “Optimal dynamic multicast scheduling for
cache-enabled content-centric wireless networks,” IEEE Transactions on
Communications, vol. 65, no. 7, pp. 2956–2970, July 2017.

[9] Y. Cui and D. Jiang, “Analysis and optimization of caching and multi-
casting in large-scale cache-enabled heterogeneous wireless networks,”
IEEE Trans. on Wireless Comms., vol. 16, no. 1, pp. 250–264, Jan 2017.

[10] A. Lobzhanidze, W. Zeng, P. Gentry, and A. Taylor, “Mainstream media
vs. social media for trending topic prediction - an experimental study,”
in IEEE Consumer Comms. and Netw. Conf., Jan 2013, pp. 729–732.

[11] S. O. Somuyiwa, A. György, and D. Gündüz, “A reinforcement-learning
approach to proactive caching in wireless networks,” IEEE Journal on
Selected Areas in Communications, vol. 36, no. 7, pp. 1–14, July 2018.

[12] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” CoRR, vol. abs/1509.02971, 2015.

[13] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gra-
dient methods for reinforcement learning with function approximation,”
in Advances in Neural Info. Proc. Sys. 13 (NIPS), 2000, p. 1057–1063.

[14] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in Proceedings of the 31st
Int’l Conf. on Machine Learning (ICML), 2014, p. 387–395.

[15] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 1998.

[16] T36.814 V9.0.0, “Further advancements for E-UTRA physical layer
aspects (release 9),” 3GPP, Mar. 2010.

